Skip to main content

Methods to Analyze the Contribution of Complement Evasion Factor (CEF) to Streptococcus pyogenes Virulence

  • Protocol
  • First Online:
Bacterial Pathogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2674))

  • 777 Accesses

Abstract

Group A Streptococcus (GAS, Streptococcus pyogenes) is an exclusively human pathogen that causes a range of diseases, including pharyngitis, tonsillitis, impetigo, erysipelas, necrotizing fasciitis, and toxic shock syndrome. Post-streptococcal sequelae include acute rheumatic fever and rheumatic heart disease. The bacterium produces a large arsenal of virulence factors that contribute to host tissue adhesion/colonization, bacterial spread, and host immune evasion. Immune evasion factors include proteins that interfere with complement, a system of plasma proteins that are activated by pathogens resulting in a variety of reactions on the surface of the pathogen. This leads to the activation of active components with a variety of effector functions, such as cell lysis, opsonization, and chemotaxis of phagocytes to the site of infection. We have recently identified a novel “complement evasion factor” (CEF) in S. pyogenes. CEF directly interacts with complement proteins C1r, C1s, C3, and C5, interrupts all three complement pathways, and prevents opsonization of the bacterial surface with C3b. We here present methods used to analyze the complement interference of CEF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Botteaux A, Budnik I, Smeesters PR (2018) Group A streptococcus infections in children: from virulence to clinical management. Curr Opin Infect Dis 31(3):224–230. https://doi.org/10.1097/QCO.0000000000000452

    Article  PubMed  Google Scholar 

  2. Cunningham MW (2000) Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 13(3):470–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stevens DL, Bryant AE (2016) Severe group A streptococcal infections. In: Ferretti JJ, Stevens DL, Fischetti VA (eds) Streptococcus pyogenes : basic biology to clinical manifestations. University of Oklahoma Health Sciences Center (c) The University of Oklahoma Health Sciences Center, Oklahoma City. (OK)

    Google Scholar 

  4. Hurst JR, Brouwer S, Walker MJ, McCormick JK (2021) Streptococcal superantigens and the return of scarlet fever. PLoS Pathog 17(12):e1010097. https://doi.org/10.1371/journal.ppat.1010097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wessels MR (2016) Pharyngitis and scarlet Ffever. In: Ferretti JJ, Stevens DL, Fischetti VA (eds) Streptococcus pyogenes : basic biology to clinical manifestations. Oklahoma City (OK)

    Google Scholar 

  6. Cunningham MW (2012) Streptococcus and rheumatic fever. Curr Opin Rheumatol 24(4):408–416. https://doi.org/10.1097/BOR.0b013e32835461d3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martin WJ, Steer AC, Smeesters PR, Keeble J, Inouye M, Carapetis J, Wicks IP (2015) Post-infectious group A streptococcal autoimmune syndromes and the heart. Autoimmun Rev 14(8):710–725. https://doi.org/10.1016/j.autrev.2015.04.005

    Article  PubMed  Google Scholar 

  8. Barnett TC, Cole JN, Rivera-Hernandez T, Henningham A, Paton JC, Nizet V, Walker MJ (2015) Streptococcal toxins: role in pathogenesis and disease. Cell Microbiol 17(12):1721–1741. https://doi.org/10.1111/cmi.12531

    Article  CAS  PubMed  Google Scholar 

  9. Brouwer S, Barnett TC, Rivera-Hernandez T, Rohde M, Walker MJ (2016) Streptococcus pyogenes adhesion and colonization. FEBS Lett 590(21):3739–3757. https://doi.org/10.1002/1873-3468.12254

    Article  CAS  PubMed  Google Scholar 

  10. Nakata M, Kreikemeyer B (2021) Genetics, structure, and function of group A streptococcal pili. Front Microbiol 12:616508. https://doi.org/10.3389/fmicb.2021.616508

    Article  PubMed  PubMed Central  Google Scholar 

  11. Proft T, Fraser JD (2007) Streptococcal superantigens. Chem Immunol Allergy 93:1–23. https://doi.org/10.1159/000100851

    Article  CAS  PubMed  Google Scholar 

  12. Reglinski M, Sriskandan S (2014) The contribution of group A streptococcal virulence determinants to the pathogenesis of sepsis. Virulence 5(1):127–136. https://doi.org/10.4161/viru.26400

    Article  PubMed  Google Scholar 

  13. Wilde S, Johnson AF, LaRock CN (2021) Playing with fire: proinflammatory virulence mechanisms of group A streptococcus. Front Cell Infect Microbiol 11:704099. https://doi.org/10.3389/fcimb.2021.704099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Laabei M, Ermert D (2019) Catch Me if You Can: Streptococcus pyogenes complement evasion strategies. J Innate Immun 11(1):3–12. https://doi.org/10.1159/000492944

    Article  CAS  PubMed  Google Scholar 

  15. Okumura CY, Nizet V (2014) Subterfuge and sabotage: evasion of host innate defenses by invasive Gram-positive bacterial pathogens. Annu Rev Microbiol 68:439–458. https://doi.org/10.1146/annurev-micro-092412-155711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Syed S, Viazmina L, Mager R, Meri S, Haapasalo K (2020) Streptococci and the complement system: interplay during infection, inflammation and autoimmunity. FEBS Lett 594(16):2570–2585. https://doi.org/10.1002/1873-3468.13872

    Article  CAS  PubMed  Google Scholar 

  17. Nesargikar PN, Spiller B, Chavez R (2012) The complement system: history, pathways, cascade and inhibitors. Eur J Microbiol Immunol (Bp) 2(2):103–111. https://doi.org/10.1556/EuJMI.2.2012.2.2

    Article  CAS  PubMed  Google Scholar 

  18. Riihila P, Nissinen L, Knuutila J, Rahmati Nezhad P, Viiklepp K, Kahari VM (2019) Complement system in cutaneous squamous cell carcinoma. Int J Mol Sci 20(14). https://doi.org/10.3390/ijms20143550

  19. Lynskey NN, Reglinski M, Calay D, Siggins MK, Mason JC, Botto M, Sriskandan S (2017) Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase. PLoS Pathog 13(8):e1006493. https://doi.org/10.1371/journal.ppat.1006493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fernie-King BA, Seilly DJ, Willers C, Wurzner R, Davies A, Lachmann PJ (2001) Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of C567 onto cell membranes. Immunology 103(3):390–398. https://doi.org/10.1046/j.1365-2567.2001.01249.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. von Pawel-Rammingen U (2012) Streptococcal IdeS and its impact on immune response and inflammation. J Innate Immun 4(2):132–140. https://doi.org/10.1159/000332940

    Article  CAS  Google Scholar 

  22. Collin M, Olsen A (2001) EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20(12):3046–3055. https://doi.org/10.1093/emboj/20.12.3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Honda-Ogawa M, Sumitomo T, Mori Y, Hamd DT, Ogawa T, Yamaguchi M, Nakata M, Kawabata S (2017) Streptococcus pyogenes endopeptidase O contributes to evasion from complement-mediated bacteriolysis via binding to human complement factor C1q. J Biol Chem 292(10):4244–4254. https://doi.org/10.1074/jbc.M116.749275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lambris JD, Ricklin D, Geisbrecht BV (2008) Complement evasion by human pathogens. Nat Rev Microbiol 6(2):132–142. https://doi.org/10.1038/nrmicro1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zipfel PF, Skerka C (2014) Staphylococcus aureus: the multi headed hydra resists and controls human complement response in multiple ways. Int J Med Microbiol 304(2):188–194. https://doi.org/10.1016/j.ijmm.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  26. Aghababa H, Ting YT, Pilapitiya D, Loh JMS, Young PG, Proft T (2022) Complement evasion factor (CEF), a novel immune evasion factor of Streptococcus pyogenes. Virulence 13(1):225–240. https://doi.org/10.1080/21505594.2022.2027629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lorenz N, Clow F, Radcliff FJ, Fraser JD (2013) Full functional activity of SSL7 requires binding of both complement C5 and IgA. Immunol Cell Biol 91(7):469–476. https://doi.org/10.1038/icb.2013.28

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Proft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aghababa, H., Loh, J.M.S., Proft, T. (2023). Methods to Analyze the Contribution of Complement Evasion Factor (CEF) to Streptococcus pyogenes Virulence. In: Nordenfelt, P., Collin, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology, vol 2674. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3243-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3243-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3242-0

  • Online ISBN: 978-1-0716-3243-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics