Skip to main content

Computational Vaccine Design for Common Allergens

  • Protocol
  • First Online:
Computational Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2673))

  • 998 Accesses

Abstract

In this chapter, the steps of designing candidate vaccine molecules for allergen-specific immunotherapy (AIT) using immunoinformatics are described. The most modern approach of AIT deals with carrier-bound B cell epitope and multi-epitope vaccine molecules. The strategy for designing these molecules and the bioinformatics tools and serversĀ used for that are discussed in detail here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sledge RF (1938) Treatment of hay fever with alum-precipitated pollen extract. J Allergy 9:424

    ArticleĀ  Google ScholarĀ 

  2. Lee WY, Sehon AH (1977) Abrogation of reaginic antibodies with modified allergens. Nature 267(5612):618ā€“619. https://doi.org/10.1038/267618a0

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Dorofeeva Y, Shilovskiy I, Tulaeva I, Focke-Tejkl M, Flicker S, Kudlay D, Khaitov M, Karsonova A, Riabova K, Karaulov A, Khanferyan R (2021) Past, present, and future of allergen immunotherapy vaccines. Allergy 76(1):131ā€“149. https://doi.org/10.1111/all.14300

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Zieglmayer P, Focke-Tejkl M, Schmutz R, Lemell P, Zieglmayer R, Weber M, Kiss R, Blatt K, Valent P, Stolz F, Huber H (2016) Mechanisms, safety, and efficacy of a B cell epitope-based vaccine for immunotherapy of grass pollen allergy. EBioMedicine 11:43ā€“57. https://doi.org/10.1016/j.ebiom.2016.08.022

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Eckl-Dorna J, Weber M, Stanek V, Linhart B, Ristl R, Waltl EE, Villazala-Merino S, Hummel A, Focke-Tejkl M, Froeschel R, Neubauer A (2019) Two years of treatment with the recombinant grass pollen allergy vaccine BM32 induces a continuously increasing allergen-specific IgG4 response. EBioMedicine 50:421ā€“432. https://doi.org/10.1016/j.ebiom.2019.11.006

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Focke-Tejkl M, Weber M, Niespodziana K, Neubauer A, Huber H, Henning R, Stegfellner G, Maderegger B, Hauer M, Stolz F, Niederberger V (2015) Development and characterization of a recombinant, hypoallergenic, peptide-based vaccine for grass pollen allergy. J Allergy Clin Immunol 135(5):1207ā€“1217. https://doi.org/10.1016/j.jaci.2014.09.012

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Focke M, Mahler V, Ball T, Sperr WR, Majlesi Y, Valent P, Kraft D, Valenta R (2001) Nonanaphylactic synthetic peptides derived from B cell epitopes of the major grass pollen allergen, Phl p 1, for allergy vaccination. FASEB J 15(11):2042ā€“2044. https://doi.org/10.1096/fj.01-0016fje

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Sircar G, Jana K, Dasgupta A, Saha S, Bhattacharya SG (2016) Epitope mapping of Rhi o 1 and generation of a hypoallergenic variant: a candidate molecule for fungal allergy vaccines. J Biol Chem 291(34):18016ā€“18029. https://doi.org/10.1074/jbc.M116.732032

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Sircar G, Ghosh N, Saha S (2022) Designing next-generation vaccines against common pan-allergens using in silico approaches. Monoclon Antib Immunodiagn Immunother 41(5):231ā€“242. https://doi.org/10.1089/mab.2021.0033

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook, pp 571ā€“607. https://doi.org/10.1385/1-59259-890-0:571

    ChapterĀ  Google ScholarĀ 

  11. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404ā€“405. https://doi.org/10.1093/bioinformatics/16.4.404

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7ā€“8. https://doi.org/10.1038/nmeth.3213

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK - a program to check the stereochemical quality of protein structures. J App Cryst 26(2):283ā€“291. https://doi.org/10.1107/S0021889892009944

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003) Protein disorder prediction: implications for structural proteomics. Structure 11(11):1453ā€“1459. https://doi.org/10.1016/j.str.2003.10.002

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Grote A, Hiller K, Scheer M, MĆ¼nch R, Nƶrtemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33 (suppl_2):W526-31. https://doi.org/10.1093/nar/gki376

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406ā€“3415. https://doi.org/10.1093/nar/gkg595

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Nagpal G, Usmani SS, Dhanda SK, Kaur H, Singh S, Sharma M, Raghava GP (2017) Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Sci Rep 7(1):1ā€“10. https://doi.org/10.1038/srep42851

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Rapin N, Lund O, Bernaschi M, Castiglione F (2010) Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS One 5(4):e9862. https://doi.org/10.1371/journal.pone.0009862

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Acknowledgments

NGĀ acknowledges the Vice Chancellor of Vidyasagar UniversityĀ and DST SERB, Government of India funded project (Sanction no. CRG/2019/003276). GS acknowledges DBT/Wellcome Trust India Alliance for providing an Early Career Fellowship Grant (IA/E/17/1/503696). SS acknowledges the BIC COE project funded by the Department of Biotechnology, Government of India (sanction no. BT/PR40174/BTIS/137/45/2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipto Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ghosh, N., Sircar, G., Saha, S. (2023). Computational Vaccine Design for Common Allergens. In: Reche, P.A. (eds) Computational Vaccine Design. Methods in Molecular Biology, vol 2673. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3239-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3239-0_33

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3238-3

  • Online ISBN: 978-1-0716-3239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics