Skip to main content

A Web-Based Method for the Identification of IL6-Based Immunotoxicity in Vaccine Candidates

  • Protocol
  • First Online:
Computational Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2673))

Abstract

Interleukin 6 (IL6) is a major pro-inflammatory cytokine that plays a pivotal role in both innate and adaptive immune responses. In the past, a number of studies reported that high level of IL6 promotes the proliferation of cancer, autoimmune disorders, and cytokine storm in COVID-19 patients. Thus, it is extremely important to identify and remove the antigenic regions from a therapeutic protein or vaccine candidate that may induce IL6-associated immunotoxicity. In order to overcome this challenge, our group has developed a computational tool, IL6pred, for discovering IL6-inducing peptides in a vaccine candidate. The aim of this chapter is to describe the potential applications and methodology of IL6pred. It sheds light on the prediction, designing, and scanning modules of IL6pred webserver and standalone package (https://webs.iiitd.edu.in/raghava/il6pred/).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pulendran B, Ahmed R (2011) Immunological mechanisms of vaccination. Nat Immunol 12(6):509–517. https://doi.org/10.1038/ni.2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cid R, Bolivar J (2021) Platforms for production of protein-based vaccines: from classical to next-generation strategies. Biomol Ther 11(8). https://doi.org/10.3390/biom11081072

  3. Usmani SS, Raghava GPS (2020) Potential challenges for coronavirus (SARS-CoV-2) vaccines under trial. Front Immunol 11:561851. https://doi.org/10.3389/fimmu.2020.561851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elhay MJ, Andersen P (1997) Immunological requirements for a subunit vaccine against tuberculosis. Immunol Cell Biol 75(6):595–603. https://doi.org/10.1038/icb.1997.94

    Article  CAS  PubMed  Google Scholar 

  5. Andersen P, Doherty TM (2005) TB subunit vaccines--putting the pieces together. Microbes Infect 7(5–6):911–921. https://doi.org/10.1016/j.micinf.2005.03.013

    Article  CAS  PubMed  Google Scholar 

  6. Black M, Trent A, Tirrell M, Olive C (2010) Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev Vaccines 9(2):157–173. https://doi.org/10.1586/erv.09.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaufmann SH (2012) Tuberculosis vaccine development: strength lies in tenacity. Trends Immunol 33(7):373–379. https://doi.org/10.1016/j.it.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  8. Kanoi BN, Egwang TG (2007) New concepts in vaccine development in malaria. Curr Opin Infect Dis 20(3):311–316. https://doi.org/10.1097/QCO.0b013e32816b5cc2

    Article  PubMed  Google Scholar 

  9. Malonis RJ, Lai JR, Vergnolle O (2020) Peptide-based vaccines: current progress and future challenges. Chem Rev 120(6):3210–3229. https://doi.org/10.1021/acs.chemrev.9b00472

    Article  CAS  PubMed  Google Scholar 

  10. Agarwal N, Padmanabh S, Vogelzang NJ (2012) Development of novel immune interventions for prostate cancer. Clin Genitourin Cancer 10(2):84–92. https://doi.org/10.1016/j.clgc.2012.01.012

    Article  PubMed  Google Scholar 

  11. Degos F (1995) Protein subunit vaccines: example of vaccination against hepatitis B virus. Rev Prat 45(12):1488–1491

    CAS  PubMed  Google Scholar 

  12. Heidary M, Kaviar VH, Shirani M, Ghanavati R, Motahar M, Sholeh M, Ghahramanpour H, Khoshnood S (2022) A comprehensive review of the protein subunit vaccines against COVID-19. Front Microbiol 13:927306. https://doi.org/10.3389/fmicb.2022.927306

    Article  PubMed  PubMed Central  Google Scholar 

  13. Usmani SS, Kumar R, Bhalla S, Kumar V, Raghava GPS (2018) In silico tools and databases for designing peptide-based vaccine and drugs. Adv Protein Chem Struct Biol 112:221–263. https://doi.org/10.1016/bs.apcsb.2018.01.006

    Article  CAS  PubMed  Google Scholar 

  14. Nagpal G, Usmani SS, Raghava GPS (2018) A web resource for designing subunit vaccine against major pathogenic species of bacteria. Front Immunol 9:2280. https://doi.org/10.3389/fimmu.2018.02280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lata S, Raghava GP (2008) CytoPred: a server for prediction and classification of cytokines. Protein Eng Des Sel 21(4):279–282. https://doi.org/10.1093/protein/gzn006

    Article  CAS  PubMed  Google Scholar 

  16. Dhanda SK, Gupta S, Vir P, Raghava GP (2013) Prediction of IL4 inducing peptides. Clin Dev Immunol 2013:263952. https://doi.org/10.1155/2013/263952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anjali Lathwal RK, Kaur D, Raghava GPS (2021) In silico model for predicting IL-2 inducing peptides in human. bioRxiv. https://doi.org/10.1101/2021.06.20.449146

  18. Dhanda SK, Vir P, Raghava GP (2013) Designing of interferon-gamma inducing MHC class-II binders. Biol Direct 8:30. https://doi.org/10.1186/1745-6150-8-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagpal G, Usmani SS, Dhanda SK, Kaur H, Singh S, Sharma M, Raghava GP (2017) Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Sci Rep 7:42851. https://doi.org/10.1038/srep42851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gupta S, Mittal P, Madhu MK, Sharma VK (2017) IL17eScan: a tool for the identification of peptides inducing IL-17 response. Front Immunol 8:1430. https://doi.org/10.3389/fimmu.2017.01430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gupta S, Sharma AK, Shastri V, Madhu MK, Sharma VK (2017) Prediction of anti-inflammatory proteins/peptides: an insilico approach. J Transl Med 15(1):7. https://doi.org/10.1186/s12967-016-1103-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jain S, Dhall A, Patiyal S, Raghava GPS (2022) IL13Pred: A method for predicting immunoregulatory cytokine IL-13 inducing peptides. Comput Biol Med 143:105297. https://doi.org/10.1016/j.compbiomed.2022.105297

    Article  CAS  PubMed  Google Scholar 

  23. Hirano T (1998) Interleukin 6 and its receptor: ten years later. Int Rev Immunol 16(3–4):249–284. https://doi.org/10.3109/08830189809042997

    Article  CAS  PubMed  Google Scholar 

  24. Covarrubias AJ, Horng T (2014) IL6 strikes a balance in metabolic inflammation. Cell Metab 19(6):898–899. https://doi.org/10.1016/j.cmet.2014.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hong DS, Angelo LS, Kurzrock R (2007) Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer 110(9):1911–1928. https://doi.org/10.1002/cncr.22999

    Article  CAS  PubMed  Google Scholar 

  26. Su H, Lei CT, Zhang C (2017) Interleukin-6 signaling pathway and its role in kidney disease: an update. Front Immunol 8:405. https://doi.org/10.3389/fimmu.2017.00405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rose-John S, Winthrop K, Calabrese L (2017) The role of IL6 in host defence against infections: immunobiology and clinical implications. Nat Rev Rheumatol 13(7):399–409. https://doi.org/10.1038/nrrheum.2017.83

    Article  CAS  PubMed  Google Scholar 

  28. Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS (2020) IL6: relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 53:13–24. https://doi.org/10.1016/j.cytogfr.2020.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hirano T (2010) Interleukin 6 in autoimmune and inflammatory diseases: a personal memoir. Proc Jpn Acad Ser B Phys Biol Sci 86(7):717–730. https://doi.org/10.2183/pjab.86.717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, Ahuja AA, Sharma M, Gautam A, Raghava GPS (2017) THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One 12(7):e0181748. https://doi.org/10.1371/journal.pone.0181748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dhall A, Patiyal S, Sharma N, Usmani SS, Raghava GPS (2021) Computer-aided prediction and design of IL6 inducing peptides: IL6 plays a crucial role in COVID-19. Brief Bioinform 22(2):936–945. https://doi.org/10.1093/bib/bbaa259

    Article  CAS  PubMed  Google Scholar 

  32. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B (2019) The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 47(D1):D339–D343. https://doi.org/10.1093/NAR/GKY1006

    Article  CAS  PubMed  Google Scholar 

  33. Pande A, Patiyal S, Lathwal A, Arora C, Kaur D, Dhall A, Mishra G, Kaur H, Sharma N, Jain S, Usmani SS, Agrawal P, Kumar R, Kumar V, Raghava GPS (2019) Computing wide range of protein/peptide features from their sequence and structure. bioRxiv:599126. https://doi.org/10.1101/599126

  34. Agrawal P, Kumar R, Usmani SS, Dhall A, Patiyal S, Sharma N, Kaur H, Kumar V, Kaur D, Jain S (2019) GPSRdocker: a Docker-based resource for genomics, proteomics and systems biology. bioRxiv:827766

    Google Scholar 

  35. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202–W208. https://doi.org/10.1093/nar/gkp335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32(Web Server issue):W20–W25. https://doi.org/10.1093/nar/gkh435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Department of Bio-Technology (DBT) and Department of Science and Technology (DST-INSPIRE) for fellowships and the financial support and Department of Computational Biology, IIITD, New Delhi, for infrastructure and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gajendra P. S. Raghava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dhall, A., Patiyal, S., Sharma, N., Usmani, S.S., Raghava, G.P.S. (2023). A Web-Based Method for the Identification of IL6-Based Immunotoxicity in Vaccine Candidates. In: Reche, P.A. (eds) Computational Vaccine Design. Methods in Molecular Biology, vol 2673. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3239-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3239-0_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3238-3

  • Online ISBN: 978-1-0716-3239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics