Skip to main content

The Bruce Effect: Complementary Roles of Olfactory Memory and Male-Sourced Estradiol

  • Protocol
  • First Online:
Animal Models of Reproductive Behavior

Part of the book series: Neuromethods ((NM,volume 200))

  • 250 Accesses

Abstract

Uterine implantation of fertilized ova is a highly sensitive transition from minimal maternal investment to increasing devotion of resources to pregnancy. It involves a finely tuned interplay in the uterus between progesterone (P4) and the powerful estrogen, 17β-estradiol (E2). P4 generally supports implantation, whereas minute elevations of E2 terminate it. Diverse maternal stressors can cause implantation to fail, usually by raising the female’s endogenous E2:P4 ratio. This is viewed as an ancient mammalian adaptation that forestalls adverse outcomes when circumstances are not propitious to maternal and fetal/offspring health.

In 1959, it was discovered that exposing inseminated female mice to novel males (those other than the sire) caused implantation failure (the Bruce effect). Novel males of a genetic strain distinct from the sire’s strain induced the strongest effects. This led to the notion that the inseminated female imprints on the sire’s odor and reacts differently to novel males’ odors (the olfactory memory hypothesis). Females experiencing the Bruce effect showed degeneration of the ovarian corpora lutea, which produce P4 and are normally sustained by pituitary prolactin pulses. The effect was shown to be mitigated by rendering the female anosmic or by giving her exogenous prolactin or P4. This led to decades of research examining constituents of male urine that signal individual differences, receptors in the olfactory system that transduce chemical messages to neural signals, and neural pathways that bring this information to the hypothalamus, which controls pituitary prolactin. Unfortunately, much of this research was conducted without reference to the phenomenon of stress-induced implantation failures, and some of it was confounded by human handling and other stress-inducing procedures.

Later, it was discovered that male urine and seminal emissions contain substantial quantities of bioactive E2, especially when males have not recently mated and are near females. Manipulations that diminish male urinary E2 and those that reduce female reactivity to E2 can prevent the Bruce effect. When tritium-labeled E2 (3H-E2) is administered to males, untreated females housed briefly with these males show substantial radioactivity in the uterus and other tissues where estrogen receptors are abundant. This steroid transfer occurs without mediation by the brain, as E2 is a small, polar, and lipophilic molecule that is readily absorbed percutaneously, nasally, and vaginally directly into circulation. Moreover, when novel males are housed directly with females and allowed to mate, relatively high levels of E2 are deposited directly into the female’s reproductive tract.

The olfactory memory and the male-sourced-E2 hypotheses are not mutually exclusive alternatives. In fact, they are complementary, as a high E2:P4 ratio impedes implantation via several known uterine mechanisms. Just as there are multiple and often redundant mechanisms that subserve other fundamental adaptations (e.g., hunger, thirst, mating behavior, and circadian rhythm), the Bruce effect is multicausal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bruce HM (1959) An exteroceptive block to pregnancy in the mouse. Nature 184:105

    Article  CAS  PubMed  Google Scholar 

  2. Bruce HM (1960) A block to pregnancy in mice caused by the proximity of strange males. J Reprod Fertil 1:96–103

    Article  CAS  PubMed  Google Scholar 

  3. Bruce HM (1961) Time relations in the pregnancy-block induced in mice by strange males. J Reprod Fertil 2:138–142

    Article  Google Scholar 

  4. Bruce HM (1965) Effect of castration on the reproductive pheromones of male mice. J Reprod Fertil 10:141–143

    Article  CAS  PubMed  Google Scholar 

  5. Dominic CJ (1965) The origin of the pheromones causing pregnancy block in mice. J Reprod Fertil 10:469–472

    Article  CAS  PubMed  Google Scholar 

  6. Bruce HM, Parrott DMV (1960) Role of olfactory sense in pregnancy block by strange males. Science 131:1526

    Article  CAS  PubMed  Google Scholar 

  7. Parkes AS, Bruce HM (1962) Pregnancy block in female mice placed in boxes soiled by males. J Reprod Fertil 4:303–308

    Article  CAS  PubMed  Google Scholar 

  8. Bronson FH, Eleftheriou BE (1963) Influence of strange males on implantation in the deermouse. Gen Comp Endocrinol 3:515–518

    Article  CAS  PubMed  Google Scholar 

  9. Clulow FV, Langford PE (1971) Pregnancy-block in the meadow vole, Microtus pennsylvanicus. J Reprod Fertil 24:275–277

    Article  CAS  PubMed  Google Scholar 

  10. Heske EJ, Nelson RJ (1984) Pregnancy interruption in Microtus ochrogaster: laboratory artifact or field phenomenon. Biol Reprod 31:97–103

    Article  CAS  PubMed  Google Scholar 

  11. Marashi V, Rülicke T (2012) The Bruce effect in Norway rats. Biol Reprod 86:1–5

    Article  PubMed  Google Scholar 

  12. Rohrbach C (1982) Investigation of the Bruce effect in the Mongolian gerbil (Meriones unguiculatus). J Reprod Fertil 65:411–417

    Article  CAS  PubMed  Google Scholar 

  13. Al-Gubory KH (1998) Effects of the presence of rams during pregnancy on lambing performance in ewes. Anim Reprod Sci 52:205–211

    Article  CAS  PubMed  Google Scholar 

  14. Bartos L, Bartosova J, Pluhacek J, Sindelarova J (2011) Promiscuous behaviour disrupts pregnancy block in domestic horse mares. Behav Ecol Sociobiol 65:1567–1572

    Article  Google Scholar 

  15. Berger J (1983) Induced abortion and social factors in wild horses. Nature 303:59–61

    Article  CAS  PubMed  Google Scholar 

  16. Roberts EK, Lu A, Bergman TJ, Beehner JC (2012) A Bruce effect in wild geladas. Science 335:1222–1225

    Article  CAS  PubMed  Google Scholar 

  17. deCatanzaro D, MacNiven E (1992) Psychogenic pregnancy disruptions in mammals. Neurosci Biobehav Rev 16:43–53

    Article  CAS  PubMed  Google Scholar 

  18. Wiebold JL, Stanfield PH, Becker WC, Hillers JK (1986) The effect of restraint stress in early pregnancy in mice. J Reprod Fertil 78:185–192

    Article  CAS  PubMed  Google Scholar 

  19. Bronson FH, Eleftheriou BE, Garick EI (1964) Effects of intra- and inter-specific social stimulation on implantation in deermice. J Reprod Fertil 8:23–27

    Article  Google Scholar 

  20. Thorpe JB, Burgess PS, Sadkowski M, deCatanzaro D (2013) Estrogen-progesterone balance in the context of blastocyst implantation failure induced by predator stress. Psychoneuroendocrinology 38:3048–3056

    Article  CAS  PubMed  Google Scholar 

  21. Runner ML (1959) Embryocidal effect of handling pregnant mice and its prevention with progesterone. Anat Rec 133:330–331

    Google Scholar 

  22. Alliston CW, Ullberg LC (1961) Early pregnancy loss in sheep at ambient temperatures of 70° and 90°F as determined by embryo transfer. J Anim Sci 20:608–613

    Article  Google Scholar 

  23. Doney JM, Smith WF, Gunn RG (1976) Effects of post-mating environmental stress or administration of ACTH on early embryonic loss in sheep. J Agric Sci 87:133–136

    Article  Google Scholar 

  24. Moberg GP (1976) Effects of environment and management stress on reproduction m the dairy cow. J Dairy Sci 59:1618–1624

    Article  CAS  PubMed  Google Scholar 

  25. Arck PC (2001) Stress and pregnancy loss: role of immune mediators, hormones, and neurotransmitters. Am J Reprod Immunol 46:117–123

    Article  CAS  PubMed  Google Scholar 

  26. Clark DA (2008) Immunological factors in pregnancy wastage: fact or fiction. Am J Reprod Immunol 59:277–300

    Article  CAS  PubMed  Google Scholar 

  27. Edwards H, Reburn CJ, Wynne-Edwards KE (1995) Daily patterns of pituitary prolactin secretion and their role in regulating maternal serum progesterone concentrations across pregnancy in the Djungarian hamster (Phodopus campbelli). Biol Reprod 52:814–823

    Article  CAS  PubMed  Google Scholar 

  28. Robertson SA (2010) Immune regulation of conception and embryo implantation – all about quality control? J Reprod Immunol 85:51–57

    Article  CAS  PubMed  Google Scholar 

  29. Gidley-Baird AA, O’Neill C, Sinosich MJ, Porter RN, Pike IL, Saunders DM (1986) Failure of implantation in human in vitro fertilization and embryo transplant patients: the effects of altered progesterone/estrogen ratios in humans and mice. Fertil Steril 45:69–74

    Article  CAS  PubMed  Google Scholar 

  30. Ortiz ME, Villalon M, Croxatto HB (1979) Ovum transport and fertility following postovulatory treatment with estradiol in rats. Biol Reprod 21:1163–1167

    Article  CAS  PubMed  Google Scholar 

  31. Valbuena D, Martin J, de Pablo JL, Remohi J, Pellicer A, Simon C (2001) Increasing levels of estradiol are deleterious to embryonic implantation because they directly affect the embryo. Fertil Steril 76:962–968

    Article  CAS  PubMed  Google Scholar 

  32. Rajabi N, Thorpe JB, Foster WG, deCatanzaro D (2014) Novel male exposure reduces uterine e-cadherin, increases uterine luminal area, and diminishes progesterone levels while disrupting blastocyst implantation in inseminated mice. J Steroid Biochem Mol Biol 139:107–113

    Article  CAS  PubMed  Google Scholar 

  33. Martin L, Finn CA, Carter J (1970) Effects of progesterone and oestradiol-17β on the luminal epithelium of the mouse uterus. J Reprod Fertil 21:461–469

    Article  CAS  PubMed  Google Scholar 

  34. Naftalin RJ, Pedley KC, Pocock VJ, Milligan SR (2002) Progesterone stimulation of fluid absorption by the rat uterine gland. Reproduction 123:633–638

    Article  CAS  PubMed  Google Scholar 

  35. Parr MB (1983) Relationship of uterine closure to ovarian hormones and endocytosis in the rat. J Reprod Fertil 68:185–188

    Article  CAS  PubMed  Google Scholar 

  36. Salleh N, Baines DL, Naftalin RJ, Milligan SR (2005) The hormonal control of uterine luminal fluid secretion and absorption. J Membr Biol 206:17–28

    Article  CAS  PubMed  Google Scholar 

  37. Aplin JD (1997) Adhesion molecules in implantation. Rev Reprod 2:84–93

    Article  CAS  PubMed  Google Scholar 

  38. Hyland RA, Shaw TJ, Png FY, Murphy CR (1998) Pan-cadherin concentrates apically in uterine epithelial cells during uterine closure in the rat. Acta Histochem 100:75–81

    Article  CAS  PubMed  Google Scholar 

  39. Jha RK, Titus S, Saxena D, Kumar PG, Laloraya M (2006) Profiling of e-cadherin, β-catenin and Ca2+ in embryo–uterine interactions at implantation. FEBS Lett 580:5653–5660

    Article  CAS  PubMed  Google Scholar 

  40. Paria BC, Zhao X, Das SK, Dey SK, Yoshinaga K (1999) Zonula occludens-1 and e-cadherin are coordinately expressed in the mouse uterus with the initiation of implantation and decidualization. Dev Biol 208:488–501

    Article  CAS  PubMed  Google Scholar 

  41. Rahnama F, Thompson B, Steiner M, Shafiei F, Lobie PE, Mitchell MD (2009) Epigenetic regulation of e-cadherin controls endometrial receptivity. Endocrinology 150:1466–1472

    Article  CAS  PubMed  Google Scholar 

  42. Potter SW, Gaza G, Morris JE (1996) Estradiol induces e-cadherin degradation in mouse uterine epithelium during the estrous cycle and early pregnancy. J Cell Physiol 169:1–14

    Article  CAS  PubMed  Google Scholar 

  43. Srinivasan KR, Blesson CS, Fatima I, Kitchlu S, Jain SK, Mehrotra PK, Dwivedi A (2009) Expression of αvβ3 integrin in rat endometrial epithelial cells and its functional role during implantation. Gen Comp Endocrinol 160:124–133

    Article  CAS  PubMed  Google Scholar 

  44. Widra EA, Weeraratna A, Stepp MA, Stillman RJ, Patierno SR (1997) Modulation of implantation- associated integrin expression but not uteroglobin by steroid hormones in an endometrial cell line. Mol Hum Reprod 3:563–568

    Article  CAS  PubMed  Google Scholar 

  45. deCatanzaro D, Graham C (1992) Influence of exogenous epinephrine on two reproductive parameters in female mice: disruption of receptivity but not early pregnancy. Horm Behav 26:330–338

    Article  CAS  PubMed  Google Scholar 

  46. deCatanzaro D, MacNiven E, Ricciuti F (1991) Comparison of the adverse effects of adrenal and ovarian steroids upon early pregnancy in mice. Psychoneuroendocrinology 16:525–536

    Article  CAS  Google Scholar 

  47. deCatanzaro D, Baptista MAS, Vella ES (2001) Administration of minute quantities of 17β-estradiol on the nasal area terminates early pregnancy in inseminated female mice. Pharmacol Biochem Behav 69:503–509

    Article  CAS  PubMed  Google Scholar 

  48. Ma W, Song H, Das SK, Paria BC, Dey SK (2003) Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci U S A 100:2963–2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shors TJ, Pickett J, Wood G, Paczynski M (1999) Acute stress persistently enhances estrogen levels in the female rat. Stress 3:163–171

    Article  CAS  PubMed  Google Scholar 

  50. Thorpe JB, Gould KE, Borman ED, deCatanzaro D (2014) Circulating and urinary adrenal corticosterone, progesterone, and estradiol in response to acute stress in female mice (Mus musculus). Horm Metab Res 46:211–218

    Article  CAS  PubMed  Google Scholar 

  51. MacNiven E, deCatanzaro D, Younglai EV (1992) Chronic stress increases estrogen and other steroids in inseminated rats. Physiol Behav 52:159–162

    Article  CAS  PubMed  Google Scholar 

  52. Misdrahi D, Pardon MC, Perez-Diaz F, Hanoun N, Cohen-Salmon C (2005) Prepartum chronic ultramild stress increases corticosterone and estradiol levels in gestating mice: implications for postpartum depressive disorders. Psychiatry Res 137:123–130

    Article  CAS  PubMed  Google Scholar 

  53. Agrawal V, Jaiswal MK, Jaiswal YK (2011) Lipopolysaccharide induces alterations in ovaries and serum level of progesterone and 17β-estradiol in the mouse. Fertil Steril 95:1471–1474

    Article  CAS  PubMed  Google Scholar 

  54. deCatanzaro D, MacNiven E, Goodison T, Richardson D (1994) Estrogen antibodies reduce vulnerability to stress-induced failure of intrauterine implantation in inseminated mice. Physiol Behav 55:35–38

    Article  CAS  PubMed  Google Scholar 

  55. Parker VJ, Menzies JRW, Douglas AJ (2011) Differential changes in the hypothalamic-pituitary- adrenal axis and prolactin responses to stress in early pregnant mice. J Neuroendocrinol 23:1066–1078

    Article  CAS  PubMed  Google Scholar 

  56. MacNiven E, deCatanzaro D (1990) Reversal of stress-induced pregnancy blocks in mice by progesterone and metyrapone. Physiol Behav 47:443–448

    Article  CAS  PubMed  Google Scholar 

  57. Pratt NC, Lisk RD (1991) Role of progesterone in mediating stress-related litter deficits in the golden hamster (Mesocricetus auratus). J Reprod Fertil 92:139–146

    Article  CAS  PubMed  Google Scholar 

  58. Joachim R, Zenclussen AC, Polgar B, Douglas AJ, Fest S, Knackstedt M, Klapp BF, Arck PC (2003) The progesterone derivative dydrogesterone abrogates murine stress-triggered abortion by inducing a Th2 biased local immune response. Steroids 68:931–940

    Article  CAS  PubMed  Google Scholar 

  59. Marsden HM, Bronson FH (1965) Strange male block to pregnancy: its absence in inbred mouse strains. Nature 207:878

    Article  CAS  PubMed  Google Scholar 

  60. Spironello E, deCatanzaro D (1999) Sexual satiety diminishes the capacity of novel males to disrupt early pregnancy. J Comp Psychol 113:218–222

    Article  Google Scholar 

  61. Bakker J (2003) Sexual differentiation of the neuroendocrine mechanisms regulating mate recognition in mammals. J Neuroendocrinol 15:615–621

    Article  CAS  PubMed  Google Scholar 

  62. Baum MJ, Keverne EB (2002) Sex differences in attraction thresholds for volatile odors from male and female mouse urine. Horm Behav 41:213–219

    Article  CAS  PubMed  Google Scholar 

  63. Brennan PA (2004) The nose knows who’s who: chemosensory individuality and mate recognition in mice. Horm Behav 46:231–240

    Article  CAS  PubMed  Google Scholar 

  64. Hurst JL (2009) Female recognition and assessment of males through scent. Behav Brain Res 200:295–303

    Article  CAS  PubMed  Google Scholar 

  65. Findlayson JS, Asofsky R, Potter M, Runner CC (1965) Major urinary protein complex of normal mice: origin. Science 149:981–982

    Article  Google Scholar 

  66. Robertson DHL, Hurst JL, Bolgar MS, Gaskell SJ, Beynon RJ (1997) Molecular heterogeneity of urinary proteins in wild house mouse populations. Rapid Commun Mass Spectrom 11:786–790

    Article  CAS  PubMed  Google Scholar 

  67. Brennan PA (2009) Outstanding issues surrounding vomeronasal mechanisms of pregnancy block and individual recognition in mice. Behav Brain Res 200:287–294

    Article  CAS  PubMed  Google Scholar 

  68. Cheetham SA, Thom MD, Jury F, Ollier WER, Beynon RJ, Hurst JL (2007) The genetic basis of individual-recognition signals in the mouse. Curr Biol 17:1771–1777

    Article  CAS  PubMed  Google Scholar 

  69. Roberts SA, Simpson DM, Armstrong SD, Davidson AJ, Robertson DH, McLean L, Beynon RJ, Hurst JL (2010) Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC Biol 8:75

    Article  PubMed  PubMed Central  Google Scholar 

  70. Marchlewska-Koj A (1977) Pregnancy block elicited by urinary proteins of male mice. Biol Reprod 17:729–732

    Article  CAS  PubMed  Google Scholar 

  71. Marchlewska-Koj A (1981) Pregnancy block elicited by male urinary peptides in mice. J Reprod Fertil 61:221–224

    Article  CAS  PubMed  Google Scholar 

  72. Peele P, Salazar I, Mimmack M, Keverne EB, Brennan PA (2003) Low molecular weight constituents of male mouse urine mediate the pregnancy block effect and convey information about the identity of the mating male. Eur J Neurosci 18:622–628

    Article  CAS  PubMed  Google Scholar 

  73. Brennan PA, Peele P (2003) Towards an understanding of the pregnancy-blocking urinary chemosignals of mice. Biochem Soc Trans 31:152–155

    Article  CAS  PubMed  Google Scholar 

  74. Leinders-Zufall T, Brennan P, Widmayer P, Chandramani SP, Maul-Pavicic A, Jäger M, Li X-H, Breer H, Zufall F (2004) MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306:1022–1037

    Article  Google Scholar 

  75. Kelliher KR, Spehr M, Li X-H, Zufall F, Leinders-Zufall T (2006) Pheromonal recognition memory induced by TRPC2-independent vomeronasal sensing. Eur J Neurosci 23:3385–3390

    Article  PubMed  Google Scholar 

  76. Meredith M (1994) Chronic recording of vomeronasal pump activation in awake behaving hamsters. Physiol Behav 56:345–354

    Article  CAS  PubMed  Google Scholar 

  77. Meredith M, O’Connell RJ (1979) Efferent control of stimulus access to the hamster vomeronasal organ. J Physiol 286:301–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Meredith M, Marques DM, O’Connell RJ, Stern FL (1980) Vomeronasal pump: significance for male hamster sexual behavior. Science 207:1224–1226

    Article  CAS  PubMed  Google Scholar 

  79. Bellringer JF, Pratt HPM, Keverne EB (1980) Involvement of the vomeronasal organ and prolactin in pheromonal induction of delayed implantation in mice. J Reprod Fertil 59:223–228

    Article  CAS  PubMed  Google Scholar 

  80. Lloyd-Thomas A, Keverne EB (1982) Role of the brain and accessory olfactory system in the block to pregnancy in mice. Neuroscience 7:907–913

    Article  CAS  PubMed  Google Scholar 

  81. Herrada G, Dulac C (1997) A novel family of putative pheromone receptors in mammals with topographically organized and sexually dimorphic distribution. Cell 90:763–777

    Article  CAS  PubMed  Google Scholar 

  82. Rodriguez I, Del Punta K, Rothman A, Ishii T, Mombaerts P (2002) Multiple new and isolated families within the mouse superfamily of V1R vomeronasal receptors. Nat Neurosci 5:134–140

    Article  CAS  PubMed  Google Scholar 

  83. Luo M, Fee MS, Katz LC (2003) Encoding pheromonal signals in the accessory olfactory bulb of behaving mice. Science 299:1196–1201

    Article  CAS  PubMed  Google Scholar 

  84. Li C-S, Kaba H, Seto K (1994) Effective induction of pregnancy block by electrical stimulation of the mouse accessory olfactory bulb coincident with prolactin surges. Neurosci Lett 176:5–8

    Article  CAS  PubMed  Google Scholar 

  85. Baum MJ, Bakker J (2013) Roles of sex and gonadal steroids in mammalian pheromonal communication. Front Neuroendocrinol 34:268–284

    Article  CAS  PubMed  Google Scholar 

  86. Bruce HM, Parkes AS (1960) Hormonal factors in exteroceptive block to pregnancy in mice. J Endocrinol 20:xxix–xxx

    Google Scholar 

  87. Dominic CJ (1966) Observations of the reproductive pheromones of mice: II. Neuroendocrine factors involved in the olfactory block to pregnancy. J Reprod Fertil 11:415–421

    Article  CAS  PubMed  Google Scholar 

  88. Rajendren G, Dominic CJ (1987) The male-induced pregnancy block (the Bruce effect) in mice: re-evaluation of the ability of exogenous pregnancy in preventing implantation failure. Exp Clin Endocrinol 89:188–196

    CAS  PubMed  Google Scholar 

  89. Rajendren G, Dominic CJ (1988) The male-induced implantation failure (the Bruce effect) in mice: investigations on luteal failure in pregnancy-blocked females. Exp Clin Endocrinol 92:13–19

    Article  CAS  PubMed  Google Scholar 

  90. Rajendren G, Dominic CJ (1993) The male-induced pregnancy failure (the Bruce effect) in mice: effect of exogenous progesterone on maintenance of pregnancy in male-exposed females. Exp Clin Endocrinol 101:356–359

    Article  CAS  PubMed  Google Scholar 

  91. Milligan SR (1976) Pregnancy blocking in the vole, Microtus agrestis. II. Ovarian, uterine and vaginal changes. J Reprod Fertil 46:97–100

    Article  CAS  PubMed  Google Scholar 

  92. Rosser AE, Remfry CJ, Keverne EB (1989) Restricted exposure of mice to primer pheromones coincident with prolactin surges blocks pregnancy by changing hypothalamic dopamine release. J Reprod Fertil 87:553–559

    Article  CAS  PubMed  Google Scholar 

  93. Marchlewska-Koj A, Jemiolo B (1978) Evidence for the involvement of dopaminergic neurons in the pregnancy block effect. Neuroendocrinology 26:186–192

    Article  CAS  PubMed  Google Scholar 

  94. Wersinger SR, Temple JL, Caldwell HK, Young WS 3rd (2008) Inactivation of the oxytocin and vasopressin (Avp) 1b receptor genes, but not the Avp 1a receptor genes, differentially impairs the Bruce effect in laboratory mice. Endocrinology 149:116–121

    Article  CAS  PubMed  Google Scholar 

  95. deCatanzaro D, Beaton EA, Khan A, Vella E (2006) Urinary oestradiol and testosterone levels from novel male mice approach values sufficient to disrupt pregnancy in nearby inseminated females. Reproduction 132:309–317

    Article  CAS  PubMed  Google Scholar 

  96. deCatanzaro D, Zacharias R, Muir C (1996) Disruption of early pregnancy by direct and indirect exposure to novel males in mice: comparison of influences of preputialectomized and intact males. J Reprod Fertil 106:269–274

    Article  CAS  Google Scholar 

  97. Drickamer LC (1995) Rates of urine excretion by house mice (Mus domesticus): differences by age, sex, social status, and reproductive condition. J Chem Ecol 21:1481–1493

    Article  CAS  PubMed  Google Scholar 

  98. deCatanzaro D, Muir C, Beaton E, Jetha M, Nadella K (2003) Enzymeimmunoassay of oestradiol, testosterone and progesterone in urine samples from female mice before and after insemination. Reproduction 126:407–414

    Article  CAS  PubMed  Google Scholar 

  99. Bawarshi-Nassar NN, Hussain AA, Crooks PA (1989) Nasal absorption and metabolism of progesterone and 17β-estradiol in the rat. Drug Metab Dispos 17:248–254

    CAS  PubMed  Google Scholar 

  100. Muir C, Vella ES, Pisani N, deCatanzaro D (2001) Enzyme immunoassay of 17β-estradiol, estrone conjugates, and testosterone in urinary and fecal samples from male and female mice. Horm Metab Res 33:653–658

    Article  CAS  PubMed  Google Scholar 

  101. deCatanzaro D, Khan A, Berger RG, Lewis E (2009) Exposure to developing females induces polyuria, polydipsia, and altered urinary levels of creatinine, 17β-estradiol, and testosterone in adult male mice (Mus musculus). Horm Behav 55:240–247

    Article  CAS  PubMed  Google Scholar 

  102. Muir CC, Treasurywala K, McAllister S, Sutherland J, Dukas L, Berger RG, Khan A, deCatanzaro D (2008) Enzyme immunoassay of testosterone, 17β-estradiol, and progesterone in perspiration and urine of preadolescents and young adults: exceptional levels in men’s axillary perspiration. Horm Metab Res 40:819–826

    Article  CAS  PubMed  Google Scholar 

  103. Elliott B, Muir C, deCatanzaro D (2017) Sources of variance within and among young men in concentrations of 17β-estradiol and testosterone in axillary perspiration. Physiol Behav 173:23–29

    Article  CAS  PubMed  Google Scholar 

  104. deCatanzaro D, Pollock T (2016) Absorption and distribution of estradiol from male seminal emissions during mating. J Endocrinol 231:245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Becker SD, Hurst JL (2009) Female behaviour plays a critical role in controlling murine pregnancy block. Proc R Soc B 276:1723–1729

    Article  PubMed  PubMed Central  Google Scholar 

  106. Arakawa H, Arakawa K, Blanchard DC, Blanchard RJ (2007) Scent marking behavior in male C57BL/6J mice: sexual and developmental determination. Behav Brain Res 182:73–79

    Article  PubMed  PubMed Central  Google Scholar 

  107. Desjardins C, Maruniuk JA, Bronson FH (1973) Social rank in house mice: differentiation revealed by ultraviolet visualization of urinary marking patterns. Science 182:939–941

    Article  CAS  PubMed  Google Scholar 

  108. Maruniuk JA, Owen K, Bronson FH, Desjardins C (1974) Urinary marking in male house mice: responses to novel environmental and social stimuli. Physiol Behav 12:1035–1039

    Article  Google Scholar 

  109. deCatanzaro D, Storey A (1989) Partial mediation of strange-male-induced pregnancy blocks by sexual activity in mice (Mus musculus). J Comp Psychol 13:381–388

    Article  Google Scholar 

  110. deCatanzaro D, Murji T (2004) Inseminated female mice investigate rather than avoid novel males that disrupt pregnancy, but sires protect pregnancy. J Comp Psychol 118:251–257

    Article  PubMed  Google Scholar 

  111. deCatanzaro D, Muir C, Spironello E, Binger T, Thomas J (2000) Intense arousal of novel male mice in proximity to previously inseminated females: inactivation of males via chlorpromazine does not diminish the capacity to disrupt pregnancy. Psychobiology 28:110–114

    Article  Google Scholar 

  112. McGill TE, Blight WC (1963) Effects of genotype on the recovery of sex drive in the male mouse. J Comp Physiol Psychol 56:887–888

    Article  CAS  PubMed  Google Scholar 

  113. Batty J (1978) Acute changes in plasma testosterone levels and their relation to measures of sexual behaviour in the male house mouse (Mus musculus). Anim Behav 26:349–357

    Article  CAS  PubMed  Google Scholar 

  114. Bliss EL, Frischat A, Samuels L (1972) Brain and testicular function. Life Sci 11:231–238

    Article  CAS  Google Scholar 

  115. Spironello-Vella E, deCatanzaro D (2001) Novel male mice show gradual decline in the capacity to disrupt early pregnancy and in urinary excretion of testosterone and 17β-estradiol during the weeks immediately following castration. Horm Metab Res 33:681–686

    Article  CAS  PubMed  Google Scholar 

  116. Thorpe JB, deCatanzaro D (2012) Oestradiol treatment restores the capacity of castrated males to induce both the Vandenbergh and the Bruce effects in mice (Mus musculus). Reproduction 143:123–132

    Article  CAS  PubMed  Google Scholar 

  117. Beaton EA, deCatanzaro D (2005) Novel males’ capacity to disrupt early pregnancy in mice (Mus musculus) is attenuated via a chronic reduction of males’ urinary 17β-estradiol. Psychoneuroendocrinology 30:688–697

    Article  CAS  PubMed  Google Scholar 

  118. deCatanzaro D, Muir C, O’Brien J, Williams S (1995) Strange-male-induced pregnancy disruption in mice: reduction of vulnerability by 17β-estradiol antibodies. Physiol Behav 58:401–404

    Article  CAS  Google Scholar 

  119. Zacharias R, deCatanzaro D, Muir C (2001) Novel male mice disrupt pregnancy despite removal of vesicular-coagulating and preputial glands. Physiol Behav 68:285–290

    Article  Google Scholar 

  120. Anand Kumar TC, David GFX, Umberkomen B, Saini KB (1974) Uptake of radioactivity by body tissues and fluids in rhesus monkeys after intravenous injection or intranasal spray of tritium- labelled oestradiol and progesterone. Curr Sci India 43:435–439

    Google Scholar 

  121. Guzzo AC, Berger RG, deCatanzaro D (2010) Excretion and binding of tritium-labelled oestradiol in mice (Mus musculus): implications for the Bruce effect. Reproduction 139:255–263

    Google Scholar 

  122. Guzzo AC, Jheon J, Imtiaz F, deCatanzaro D (2012) Oestradiol transmission from males to females in the context of the Bruce and Vandenbergh effects in mice (Mus musculus). Reproduction 143:539–548

    Google Scholar 

  123. Hueber F, Besnard M, Schaefer H, Wepierre J (1994) Percutaneous absorption of estradiol and progesterone in normal and appendage-free skin of the hairless rat: lack of importance of nutritional blood flow. Skin Pharmacol 7:245–256

    Article  CAS  PubMed  Google Scholar 

  124. Scheuplein RJ, Blank I, Brauner G, MacFarlane D (1969) Percutaneous absorption of steroids. J Invest Dermatol 52:63–70

    Article  CAS  PubMed  Google Scholar 

  125. Guzzo AC, Pollock T, deCatanzaro D (2013) Transfer of [3H]estradiol-17β and [3H]progesterone from conspecifics to cohabiting female mice. J Endocrinol 217:1–10

    Article  CAS  PubMed  Google Scholar 

  126. deCatanzaro D, Pollock T, Greville LJ, Faure PA (2014) Estradiol transfer from male big brown bats (Eptesicus fuscus) to the reproductive and brain tissues of cohabiting females, and its action as a pheromone. Gen Comp Endocrinol 208:126–133

    Article  CAS  PubMed  Google Scholar 

  127. Claus R, Hoang-Vu C, Ellendorff F, Meyer HD, Schopper D, Weiler U (1987) Seminal oestrogens in the boar: origin and functions in the sow. J Steroid Biochem 27:331–335

    Article  CAS  PubMed  Google Scholar 

  128. Eiler H, Graves CN (1977) Oestrogen content of semen and the effect of exogenous oestradiol-17β on the oestrogen and androgen concentration in semen and blood plasma of bulls. J Reprod Fertil 50:17–21

    Article  CAS  PubMed  Google Scholar 

  129. Free MJ, Jaffe RA (1979) Collection of rete testis fluid from rats without previous efferent duct ligation. Biol Reprod 20:269–278

    Article  CAS  PubMed  Google Scholar 

  130. Lemazurier E, Moslemi S, Sourdaine P, Desjardins I, Plainfosse B, Seralini G-E (2002) Free and conjugated estrogens and androgens in stallion semen. Gen Comp Endocrinol 125:272–282

    Article  CAS  PubMed  Google Scholar 

  131. Reiffsteck A, Dehennin L, Scholler R (1982) Estrogens in seminal plasma of human and animal species: identification and quantitative estimation by gas chromatography–mass spectrometry associated with stable isotope dilution. J Steroid Biochem 17:567–572

    Article  CAS  PubMed  Google Scholar 

  132. Waites GMH, Einer-Jensen N (1974) Collection and analysis of rete testis fluid from macaque monkeys. J Reprod Fertil 41:505–508

    Article  CAS  PubMed  Google Scholar 

  133. Pfaff DW (1980) Estrogens and brain function: neural analysis of a hormone-controlled mammalian reproductive behavior. Springer-Verlag, New York

    Book  Google Scholar 

  134. Dominic CJ (1966) Observations of the reproductive pheromones of mice: I. Source. J Reprod Fertil 11:407–414

    Article  CAS  PubMed  Google Scholar 

  135. deCatanzaro D, Muir C, Sullivan C, Boissy A (1999) Pheromones and novel-male-induced pregnancy disruptions in mice: exposure to females is necessary for urine alone to induce an effect. Physiol Behav 66:153–157

    Article  CAS  Google Scholar 

  136. Schwagmeyer PL (1979) The Bruce effect: an evaluation of male/female advantages. Am Nat 114:932–938

    Article  Google Scholar 

  137. Labov JB (1981) Pregnancy blocking in rodents: adaptive advantages for females. Am Nat 118:361–371

    Article  Google Scholar 

  138. Rülicke T, Guncz N, Wedekind C (2006) Early maternal investment in mice: no evidence for compatible-genes sexual selection despite hybrid vigor. J Evol Biol 19:922–928

    Article  PubMed  Google Scholar 

  139. Becker SD, Hurst JL (2008) Pregnancy block from a female perspective. Chem Signal 11:141–150

    Google Scholar 

  140. Zipple MN, Roberts EK, Alberts SC, Beehner JC (2019) Male-mediated prenatal loss: functions and mechanisms. Evol Anthropol 28:114–125

    Article  PubMed  PubMed Central  Google Scholar 

  141. Blaffer-Hrdy S (1979) Infanticide among animals: a review, classification, and examination of reproductive strategies among females. Ethol Sociobiol 1:13–40

    Article  Google Scholar 

  142. deCatanzaro D (2015) Sex steroids as pheromones in mammals: the exceptional role of estradiol. Horm Behav 68:103–116

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Natural Sciences and Engineering Research Council throughout my career. Specific grant numbers are given in the cited papers. I am very grateful for the contributions of so many of my students, without which this research would never have progressed so far. Their names are first authors or co-authors of the papers cited from my lab. I also thank Jennifer deCatanzaro for her ongoing support and proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denys deCatanzaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

deCatanzaro, D. (2023). The Bruce Effect: Complementary Roles of Olfactory Memory and Male-Sourced Estradiol. In: Paredes, R.G., Portillo, W., Bedos, M. (eds) Animal Models of Reproductive Behavior. Neuromethods, vol 200. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3234-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3234-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3233-8

  • Online ISBN: 978-1-0716-3234-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics