Skip to main content

QEEG and ERP Biomarkers of Psychotic and Mood Disorders and Their Treatment Response

  • Protocol
  • First Online:
Computational Neuroscience

Part of the book series: Neuromethods ((NM,volume 199))

  • 474 Accesses

Abstract

Electroencephalography (EEG) is widely accessible and can be relatively easily applied in clinical settings. This chapter is focused on selected quantitative electroencephalographic (QEEG) and event-related potential (ERP) measures as promising diagnostic and prognostic markers of psychotic and mood disorders. We first review the evidence linking mismatch negativity (MMN) and P300 ERPs to psychosis. While not specific only for psychotic disorders, MMN and P300 represent promising markers of the onset of psychosis in high-risk individuals as well as of the outcome in psychotic patients. The second part of this chapter covers the application of QEEG techniques in the search for diagnostic and prognostic biomarkers of depression. In particular, research suggests that increased power of alpha EEG oscillations is associated with depression and response to treatment with antidepressants. Furthermore, early decrease in theta cordance predicts good treatment response to both pharmacological and non-pharmacological treatments of depression. Research including large samples of patients is needed to confirm clinical utility and cost-effectiveness of these biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590. https://doi.org/10.1016/J.CLINPH.2007.04.026

    Article  PubMed  Google Scholar 

  2. Rosburg T, Kreitschmann-Andermahr I (2016) The effects of ketamine on the mismatch negativity (MMN) in humans - a meta-analysis. Clin Neurophysiol 127:1387–1394. https://doi.org/10.1016/J.CLINPH.2015.10.062

    Article  PubMed  Google Scholar 

  3. Todd J, Harms L, Schal LU, Michie PT (2013) Mismatch negativity: translating the potential. Front Psych 4:171. https://doi.org/10.3389/FPSYT.2013.00171/XML/NLM

    Article  Google Scholar 

  4. Tada M, Kirihara K, Mizutani S et al (2019) Mismatch negativity (MMN) as a tool for translational investigations into early psychosis: a review. Int J Psychophysiol 145:5–14. https://doi.org/10.1016/J.IJPSYCHO.2019.02.009

    Article  PubMed  Google Scholar 

  5. Umbricht D, Krljesb S (2005) Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res 76:1–23. https://doi.org/10.1016/J.SCHRES.2004.12.002

    Article  PubMed  Google Scholar 

  6. Erickson MA, Ruffle A, Gold JM (2016) A meta-analysis of mismatch negativity in schizophrenia: from clinical risk to disease specificity and progression. Biol Psychiatry 79:980–987. https://doi.org/10.1016/J.BIOPSYCH.2015.08.025

    Article  PubMed  Google Scholar 

  7. Chitty KM, Lagopoulos J, Lee RSC et al (2013) A systematic review and meta-analysis of proton magnetic resonance spectroscopy and mismatch negativity in bipolar disorder. Eur Neuropsychopharmacol 23:1348–1363. https://doi.org/10.1016/J.EURONEURO.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  8. Donaldson KR, Novak KD, Foti D et al (2020) Associations of mismatch negativity with psychotic symptoms and functioning transdiagnostically across psychotic disorders. J Abnorm Psychol 129:570–580. https://doi.org/10.1037/ABN0000506

    Article  PubMed  PubMed Central  Google Scholar 

  9. Raggi A, Lanza G, Ferri R (2022) Auditory mismatch negativity in bipolar disorder: a focused review. Rev Neurosci 33:17–30. https://doi.org/10.1515/REVNEURO-2021-0010/MACHINEREADABLECITATION/RIS

    Article  CAS  PubMed  Google Scholar 

  10. Niznikiewicz MA, Spencer KM, Dickey C et al (2009) Abnormal pitch mismatch negativity in individuals with schizotypal personality disorder. Schizophr Res 110:188–193. https://doi.org/10.1016/J.SCHRES.2008.10.017

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tseng YJ, Nouchi R, Cheng CH (2021) Mismatch negativity in patients with major depressive disorder: a meta-analysis. Clin Neurophysiol 132:2654–2665. https://doi.org/10.1016/J.CLINPH.2021.06.019

    Article  PubMed  Google Scholar 

  12. Cheng CH, Chan PYS, Hsieh YW, Chen KF (2016) A meta-analysis of mismatch negativity in children with attention deficit-hyperactivity disorders. Neurosci Lett 612:132–137. https://doi.org/10.1016/J.NEULET.2015.11.033

    Article  CAS  PubMed  Google Scholar 

  13. Schwartz S, Shinn-Cunningham B, Tager-Flusberg H (2018) Meta-analysis and systematic review of the literature characterizing auditory mismatch negativity in individuals with autism. Neurosci Biobehav Rev 87:106–117. https://doi.org/10.1016/J.NEUBIOREV.2018.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen TC, Hsieh MH, Lin YT et al (2020) Mismatch negativity to different deviant changes in autism spectrum disorders: a meta-analysis. Clin Neurophysiol 131:766–777. https://doi.org/10.1016/J.CLINPH.2019.10.031

    Article  PubMed  Google Scholar 

  15. Rangaswamy M, Porjesz B (2014) Understanding alcohol use disorders with neuroelectrophysiology. Handb Clin Neurol 125:383. https://doi.org/10.1016/B978-0-444-62619-6.00023-9

    Article  PubMed  PubMed Central  Google Scholar 

  16. Näätänen R, Sussman ES, Salisbury D, Shafer VL (2014) Mismatch negativity (MMN) as an index of cognitive dysfunction. Brain Topogr 27:451–466. https://doi.org/10.1007/S10548-014-0374-6/FIGURES/2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cheng CH, Hsu WY, Lin YY (2013) Effects of physiological aging on mismatch negativity: a meta-analysis. Int J Psychophysiol 90:165–171. https://doi.org/10.1016/J.IJPSYCHO.2013.06.026

    Article  PubMed  Google Scholar 

  18. Erickson MA, Albrecht M, Ruffle A et al (2017) No association between symptom severity and MMN impairment in schizophrenia: a meta-analytic approach. Schizophr Res Cogn 9:13. https://doi.org/10.1016/J.SCOG.2017.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  19. Näätänen R, Kujala T, Kreegipuu K et al (2011) The mismatch negativity: an index of cognitive decline in neuropsychiatric and neurological diseases and in ageing. Brain 134:3435–3453. https://doi.org/10.1093/BRAIN/AWR064

    Article  PubMed  Google Scholar 

  20. Horvath A, Szucs A, Csukly G et al (2018) EEG and ERP biomarkers of Alzheimer’s disease: a critical review. Front Biosci Landmark 23:183–220. https://doi.org/10.2741/4587/4587.PDF

    Article  Google Scholar 

  21. Wacongne C (2016) A predictive coding account of MMN reduction in schizophrenia. Biol Psychol 116:68–74. https://doi.org/10.1016/J.BIOPSYCHO.2015.10.011

    Article  PubMed  Google Scholar 

  22. Randeniya R, Oestreich LKL, Garrido MI (2018) Sensory prediction errors in the continuum of psychosis. Schizophr Res 191:109–122. https://doi.org/10.1016/J.SCHRES.2017.04.019

    Article  CAS  PubMed  Google Scholar 

  23. Hamilton HK, Perez VB, Ford JM et al (2018) Mismatch negativity but not P300 is associated with functional disability in schizophrenia. Schizophr Bull 44:492–504. https://doi.org/10.1093/SCHBUL/SBX104

    Article  PubMed  Google Scholar 

  24. Li X, Deng W, Xue R et al (2021) Auditory event-related potentials, neurocognition, and global functioning in drug naïve first-episode schizophrenia and bipolar disorder. Psychol Med 53:785. https://doi.org/10.1017/S0033291721002130

    Article  PubMed  Google Scholar 

  25. Earls HA, Curran T, Mittal V (2016) A meta-analytic review of auditory event-related potential components as Endophenotypes for schizophrenia: perspectives from first-degree relatives. Schizophr Bull 42:1504–1516. https://doi.org/10.1093/SCHBUL/SBW047

    Article  PubMed  PubMed Central  Google Scholar 

  26. Donaldson KR, Larsen EM, Jonas K et al (2021) Mismatch negativity amplitude in first-degree relatives of individuals with psychotic disorders: links with cognition and schizotypy. Schizophr Res 238:161–169. https://doi.org/10.1016/J.SCHRES.2021.10.006

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fusar-Poli P, Borgwardt S, Bechdolf A et al (2013) The psychosis high-risk state: a comprehensive state-of-the-art review. JAMA Psychiatry 70:107–120. https://doi.org/10.1001/JAMAPSYCHIATRY.2013.269

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fusar-Poli P, Bonoldi I, Yung AR et al (2012) Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry 69:220–229. https://doi.org/10.1001/ARCHGENPSYCHIATRY.2011.1472

    Article  PubMed  Google Scholar 

  29. Bodatsch M, Ruhrmann S, Wagner M et al (2011) Prediction of psychosis by mismatch negativity. Biol Psychiatry 69:959–966. https://doi.org/10.1016/J.BIOPSYCH.2010.09.057

    Article  PubMed  Google Scholar 

  30. Bodatsch M, Brockhaus-Dumke A, Klosterkötter J, Ruhrmann S (2015) Forecasting psychosis by event-related potentials-systematic review and specific meta-analysis. Biol Psychiatry 77:951–958. https://doi.org/10.1016/J.BIOPSYCH.2014.09.025

    Article  PubMed  Google Scholar 

  31. Perez VB, Woods SW, Roach BJ et al (2014) Automatic auditory processing deficits in schizophrenia and clinical high-risk patients: forecasting psychosis risk with mismatch negativity. Biol Psychiatry 75:459–469. https://doi.org/10.1016/J.BIOPSYCH.2013.07.038

    Article  PubMed  Google Scholar 

  32. Hamilton HK, Roach BJ, Bachman PM et al (2022) Mismatch negativity in response to auditory deviance and risk for future psychosis in youth at clinical high risk for psychosis. JAMA Psychiatry 79:780. https://doi.org/10.1001/JAMAPSYCHIATRY.2022.1417

    Article  PubMed  Google Scholar 

  33. Shaikh M, Valmaggia L, Broome MR et al (2012) Reduced mismatch negativity predates the onset of psychosis. Schizophr Res 134:42–48. https://doi.org/10.1016/J.SCHRES.2011.09.022

    Article  PubMed  Google Scholar 

  34. Tateno T, Higuchi Y, Nakajima S et al (2021) Features of duration mismatch negativity around the onset of overt psychotic disorders: a longitudinal study. Cereb Cortex 31:2416–2424. https://doi.org/10.1093/CERCOR/BHAA364

    Article  PubMed  Google Scholar 

  35. Perrottelli A, Giordano GM, Brando F et al (2021) EEG-Based Measures in At-Risk Mental State and Early Stages of Schizophrenia: A Systematic. Rev Front Psychiatr 12:653642. https://doi.org/10.3389/fpsyt.2021.653642

    Article  Google Scholar 

  36. Lepock JR, Mizrahi R, Korostil M et al (2018) Event-related potentials in the clinical high-risk (CHR) state for psychosis: a systematic review. Clin EEG Neurosci 49:215–225. https://doi.org/10.1177/1550059418755212

    Article  PubMed  Google Scholar 

  37. Näätänen R, Shiga T, Asano S, Yabe H (2015) Mismatch negativity (MMN) deficiency: a break-through biomarker in predicting psychosis onset. Int J Psychophysiol 95:338–344. https://doi.org/10.1016/J.IJPSYCHO.2014.12.012

    Article  PubMed  Google Scholar 

  38. Wang B, Zartaloudi E, Linden JF, Bramon E (2022) Neurophysiology in psychosis: the quest for disease biomarkers. Transl Psychiatry 12:100. https://doi.org/10.1038/S41398-022-01860-X

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kaur M, Lagopoulos J, Lee RSC et al (2013) Longitudinal associations between mismatch negativity and disability in early schizophrenia- and affective-spectrum disorders. Prog Neuro Psychopharmacol Biol Psychiatr 46:161–169. https://doi.org/10.1016/J.PNPBP.2013.07.002

    Article  Google Scholar 

  40. Higgins A, Lewandowski KE, Liukasemsarn S, Hall MH (2021) Longitudinal relationships between mismatch negativity, cognitive performance, and real-world functioning in early psychosis. Schizophr Res 228:385–393. https://doi.org/10.1016/J.SCHRES.2021.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nakajima S, Higuchi Y, Tateno T et al (2021) Duration mismatch negativity predicts remission in first-episode schizophrenia patients. Front Psych 12:777378. https://doi.org/10.3389/FPSYT.2021.777378

    Article  Google Scholar 

  42. Kim M, Kim T, Hwang WJ et al (2021) Forecasting prognostic trajectories with mismatch negativity in early psychosis. Psychol Med 53:1–11. https://doi.org/10.1017/S0033291721003068

    Article  Google Scholar 

  43. Kim JS, Kwon YJ, Lee HY et al (2020) Mismatch negativity indices as a prognostic factor for remission in schizophrenia. Clin Psychopharmacol Neurosci 18:127–135. https://doi.org/10.9758/CPN.2020.18.1.127

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kok A (2001) On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 38:557–577. https://doi.org/10.1017/S0048577201990559

    Article  CAS  PubMed  Google Scholar 

  45. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148. https://doi.org/10.1016/J.CLINPH.2007.04.019

    Article  PubMed  PubMed Central  Google Scholar 

  46. Verleger R (2020) Effects of relevance and response frequency on P3b amplitudes: review of findings and comparison of hypotheses about the process reflected by P3b. Psychophysiology 57:e13542. https://doi.org/10.1111/PSYP.13542

    Article  PubMed  Google Scholar 

  47. Nieuwenhuis S, Aston-Jones G, Cohen JD (2005) Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol Bull 131:510–532. https://doi.org/10.1037/0033-2909.131.4.510

    Article  PubMed  Google Scholar 

  48. Kamp SM, Donchin E (2015) ERP and pupil responses to deviance in an oddball paradigm. Psychophysiology 52:460–471. https://doi.org/10.1111/PSYP.12378

    Article  PubMed  Google Scholar 

  49. LoTemplio S, Silcox J, Federmeier KD, Payne BR (2021) Inter- and intra-individual coupling between pupillary, electrophysiological, and behavioral responses in a visual oddball task. Psychophysiology 58:e13758. https://doi.org/10.1111/PSYP.13758

    Article  PubMed  Google Scholar 

  50. Bramon E, Rabe-Hesketh S, Sham P et al (2004) Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophr Res 70:315–329. https://doi.org/10.1016/j.schres.2004.01.004

    Article  PubMed  Google Scholar 

  51. Jeon YW, Polich J (2003) Meta-analysis of P300 and schizophrenia: patients, paradigms, and practical implications. Psychophysiology 40:684–701. https://doi.org/10.1111/1469-8986.00070

    Article  PubMed  Google Scholar 

  52. Qiu YQ, Tang YX, Chan RCK et al (2014) P300 aberration in first-episode schizophrenia patients: a meta-analysis. PLoS One 9:e97794. https://doi.org/10.1371/JOURNAL.PONE.0097794

    Article  PubMed  PubMed Central  Google Scholar 

  53. Morsel AM, Morrens M, Dhar M, Sabbe B (2018) Systematic review of cognitive event related potentials in euthymic bipolar disorder. Clin Neurophysiol 129:1854–1865. https://doi.org/10.1016/J.CLINPH.2018.05.025

    Article  PubMed  Google Scholar 

  54. Kangas ES, Vuoriainen E, Lindeman S, Astikainen P (2022) Auditory event-related potentials in separating patients with depressive disorders and non-depressed controls: a narrative review. Int J Psychophysiol 179:119–142. https://doi.org/10.1016/J.IJPSYCHO.2022.07.003

    Article  PubMed  Google Scholar 

  55. Euser AS, Arends LR, Evans BE et al (2012) The P300 event-related brain potential as a neurobiological endophenotype for substance use disorders: a meta-analytic investigation. Neurosci Biobehav Rev 36:572–603. https://doi.org/10.1016/J.NEUBIOREV.2011.09.002

    Article  PubMed  Google Scholar 

  56. Szuromi B, Czobor P, Komlósi S, Bitter I (2011) P300 deficits in adults with attention deficit hyperactivity disorder: a meta-analysis. Psychol Med 41:1529–1538. https://doi.org/10.1017/S0033291710001996

    Article  CAS  PubMed  Google Scholar 

  57. Cui T, Wang PP, Liu S, Zhang X (2017) P300 amplitude and latency in autism spectrum disorder: a meta-analysis. Eur Child Adolesc Psychiatry 26:177–190. https://doi.org/10.1007/S00787-016-0880-Z

    Article  PubMed  Google Scholar 

  58. Raggi A, Lanza G, Ferri R (2021) A review on P300 in obsessive-compulsive disorder. Front Psych 12:2119. https://doi.org/10.3389/FPSYT.2021.751215

    Article  Google Scholar 

  59. Hamilton HK, Boos AK, Mathalon DH (2020) Electroencephalography and event-related potential biomarkers in individuals at clinical high risk for psychosis. Biol Psychiatry 88:294–303. https://doi.org/10.1016/J.BIOPSYCH.2020.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kutcher SP, Blackwood DHR, Clair DS et al (1987) Auditory P300 in borderline personality disorder and schizophrenia. Arch Gen Psychiatry 44:645–650. https://doi.org/10.1001/ARCHPSYC.1987.01800190065010

    Article  CAS  PubMed  Google Scholar 

  61. Hedges D, Janis R, Mickelson S et al (2016) P300 amplitude in Alzheimer’s disease. Clin EEG Neurosci 47:48–55. https://doi.org/10.1177/1550059414550567

    Article  PubMed  Google Scholar 

  62. Tarawneh HY, Mulders WHAM, Sohrabi HR et al (2021) Investigating auditory electrophysiological measures of participants with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis of event-related potential studies. J Alzheimers Dis 84:419–448. https://doi.org/10.3233/JAD-210556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu H, Gu L, Zhang S et al (2022) (2022) N200 and P300 component changes in Parkinson’s disease: a meta-analysis. Neurol Sci 1:1–12. https://doi.org/10.1007/S10072-022-06348-6

    Article  Google Scholar 

  64. Barreiros AR, Breukelaar IA, Chen W et al (2020) Neurophysiological markers of attention distinguish bipolar disorder and unipolar depression. J Affect Disord 274:411–419. https://doi.org/10.1016/J.JAD.2020.05.048

    Article  PubMed  Google Scholar 

  65. Mathalon DH, Ford JM, Pfefferbaum A (2000) Trait and state aspects of p300 amplitude reduction in schizophrenia: a retrospective longitudinal study. Biol Psychiatry 47:434–449. https://doi.org/10.1016/S0006-3223(99)00277-2

    Article  CAS  PubMed  Google Scholar 

  66. Devrim-Üçok M, Keskin-Ergen Y, Üçok A (2016) Lack of progressive reduction in P3 amplitude after the first–episode of schizophrenia: a 6-year follow-up study. Psychiatry Res 243:303–311. https://doi.org/10.1016/J.PSYCHRES.2016.02.065

    Article  PubMed  Google Scholar 

  67. Ford JM, Mathalon DH, Marsh L et al (1999) P300 amplitude is related to clinical state in severely and moderately ill patients with schizophrenia. Biol Psychiatry 46:94–101. https://doi.org/10.1016/S0006-3223(98)00290-X

    Article  CAS  PubMed  Google Scholar 

  68. O’Donnell BF, Faux SF, McCarley RW et al (1995) Increased rate of P300 latency prolongation with age in schizophrenia. Electrophysiological evidence for a neurodegenerative process. Arch Gen Psychiatry 52:544–549. https://doi.org/10.1001/ARCHPSYC.1995.03950190026004

    Article  PubMed  Google Scholar 

  69. Mathalon DH, Ford JM, Rosenbloom M, Pfefferbaum A (2000) P300 reduction and prolongation with illness duration in schizophrenia. Biol Psychiatry 47:413–427. https://doi.org/10.1016/S0006-3223(99)00151-1

    Article  CAS  PubMed  Google Scholar 

  70. Wang J, Hirayasu Y, Hiramatsu KI et al (2003) Increased rate of P300 latency prolongation with age in drug-naive and first episode schizophrenia. Clin Neurophysiol 114:2029–2035. https://doi.org/10.1016/S1388-2457(03)00207-4

    Article  PubMed  Google Scholar 

  71. Kruiper C, Fagerlund B, Nielsen MO et al (2019) Associations between P3a and P3b amplitudes and cognition in antipsychotic-naïve first-episode schizophrenia patients. Psychol Med 49:868–875. https://doi.org/10.1017/S0033291718001575

    Article  PubMed  Google Scholar 

  72. Giordano GM, Perrottelli A, Mucci A et al (2021) Investigating the relationships of P3b with negative symptoms and Neurocognition in subjects with chronic schizophrenia. Brain Sci 11:1632. https://doi.org/10.3390/BRAINSCI11121632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Perrottelli A, Giordano GM, Brando F et al (2022) Unveiling the associations between EEG indices and cognitive deficits in schizophrenia-Spectrum disorders: a systematic review. Diagnostics 12:2193. https://doi.org/10.3390/DIAGNOSTICS12092193

    Article  PubMed  PubMed Central  Google Scholar 

  74. Monaghan CK, Brickman S, Huynh P et al (2019) A longitudinal study of event related potentials and correlations with psychosocial functioning and clinical features in first episode psychosis patients. Int J Psychophysiol 145:48–56. https://doi.org/10.1016/J.IJPSYCHO.2019.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bramon E, McDonald C, Croft RJ et al (2005) Is the P300 wave an endophenotype for schizophrenia? A meta-analysis and a family study. NeuroImage 27:960–968. https://doi.org/10.1016/J.NEUROIMAGE.2005.05.022

    Article  PubMed  Google Scholar 

  76. Bestelmeyer PEG, Phillips LH, Crombie C et al (2009) The P300 as a possible endophenotype for schizophrenia and bipolar disorder: evidence from twin and patient studies. Psychiatry Res 169:212–219. https://doi.org/10.1016/J.PSYCHRES.2008.06.035

    Article  PubMed  Google Scholar 

  77. Hall MH, Schulze K, Rijsdijk F et al (2006) Heritability and reliability of P300, P50 and duration mismatch negativity. Behav Genet 36:845–857. https://doi.org/10.1007/S10519-006-9091-6

    Article  PubMed  Google Scholar 

  78. Hall MH, Rijsdijk F, Picchioni M et al (2007) Substantial shared genetic influences on schizophrenia and event-related potentials. Am J Psychiatry 164:804–812. https://doi.org/10.1176/AJP.2007.164.5.804/ASSET/IMAGES/LARGE/R721T4.JPEG

    Article  PubMed  Google Scholar 

  79. Hederih J, Nuninga JO, van Eijk K et al (2021) Genetic underpinnings of schizophrenia-related electroencephalographical intermediate phenotypes: a systematic review and meta-analysis. Prog Neuro Psychopharmacol Biol Psychiatr 104:110001. https://doi.org/10.1016/J.PNPBP.2020.110001

    Article  CAS  Google Scholar 

  80. Van Tricht MJ, Nieman DH, Koelman JHTM et al (2010) Reduced parietal P300 amplitude is associated with an increased risk for a first psychotic episode. Biol Psychiatry 68:642–648. https://doi.org/10.1016/J.BIOPSYCH.2010.04.022

    Article  PubMed  Google Scholar 

  81. Hamilton HK, Roach BJ, Bachman PM et al (2019) Association between P300 responses to auditory oddball stimuli and clinical outcomes in the psychosis risk syndrome. JAMA Psychiatry 76:1187–1197. https://doi.org/10.1001/JAMAPSYCHIATRY.2019.2135

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tang Y, Wang J, Zhang T et al (2020) P300 as an index of transition to psychosis and of remission: data from a clinical high risk for psychosis study and review of literature. Schizophr Res 226:74–83. https://doi.org/10.1016/J.SCHRES.2019.02.014

    Article  PubMed  Google Scholar 

  83. Nieman DH, Ruhrmann S, Dragt S et al (2014) Psychosis prediction: stratification of risk estimation with information-processing and premorbid functioning variables. Schizophr Bull 40:1482–1490. https://doi.org/10.1093/SCHBUL/SBT145

    Article  PubMed  Google Scholar 

  84. Harper J, Malone SM, Iacono WG (2021) Parietal P3 and midfrontal theta prospectively predict the development of adolescent alcohol use. Psychol Med 51:416–425. https://doi.org/10.1017/S0033291719003258

    Article  PubMed  Google Scholar 

  85. Lieber AL, Prichep LS (1988) Diagnosis and subtyping of depressive disorders by quantitative electroencephalography: I. discriminant analysis of selected variables in untreated depressives. Hillside J Clin Psychiatry 10(1):71–83

    CAS  PubMed  Google Scholar 

  86. Lieber AL, Newbury ND (1988) Diagnosis and subtyping of depressive disorders by quantitative electroencephalography: III. Discriminating unipolar from bipolar depression. Hillside J Clin Psychiatry 10(2):165–172

    CAS  PubMed  Google Scholar 

  87. Pollock VE, Schneider LS (1990) Quantitative, waking EEG research on depression. Biol Psychiatry 27(7):757–780

    Article  CAS  PubMed  Google Scholar 

  88. Olbrich S, Arns M (2013) EEG biomarkers in major depressive disorder: discriminative power and prediction of treatment response. Int Rev Psychiatry 25(5):604–618. https://doi.org/10.3109/09540261.2013.816269

    Article  PubMed  Google Scholar 

  89. Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18(1):49–65

    Article  CAS  PubMed  Google Scholar 

  90. Saletu B, Anderer P, Saletu-Zyhlarz GM (2010) EEG topography and tomography (LORETA) in diagnosis and pharmacotherapy of depression. Clin EEG Neurosci 41(4):203–210. https://doi.org/10.1177/155005941004100407

    Article  CAS  PubMed  Google Scholar 

  91. Lubar JF, Congedo M, Askew JH (2003) Low-resolution electromagnetic tomography (LORETA) of cerebral activity in chronic depressive disorder. Int J Psychophysiol 49(3):175–185. https://doi.org/10.1016/s0167-8760(03)00115-6

    Article  PubMed  Google Scholar 

  92. Auerbach RP, Stewart JG, Stanton CH, Mueller EM, Pizzagalli DA (2015) Emotion-processing biases and resting EEG activity in depressed adolescents. Depress Anxiety 32(9):693–701. https://doi.org/10.1002/da.22381

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ulrich G, Renfordt E, Frick K (1986) The topographical distribution of alpha-activity in the resting EEG of endogenous-depressive inpatients with and without clinical-response to pharmacotherapy. Pharmacopsychiatry 19:272–273

    Article  Google Scholar 

  94. Suffin SC, Emory WH (1995) Neurometric subgroups in attentional and affective disorders and their association with pharmacotherapeutic outcome. Clin Electroencephalogr 26(2):76–83

    Article  CAS  PubMed  Google Scholar 

  95. Bruder GE, Sedoruk JP, Stewart JW, McGrath PJ, Quitkin FM, Tenke CE (2008) Electroencephalographic alpha measures predict therapeutic response to a selective serotonin reuptake inhibitor antidepressant: pre- and post-treatment findings. Biol Psychiatry 63(12):1171–1177. https://doi.org/10.1016/j.biopsych.2007.10.009

    Article  CAS  PubMed  Google Scholar 

  96. Tenke CE, Kayser J, Manna CG, Fekri S, Kroppmann CJ, Schaller JD et al (2011) Current source density measures of electroencephalographic alpha predict antidepressant treatment response. Biol Psychiatr 70(4):388–394. https://doi.org/10.1016/j.biopsych.2011.02.016

    Article  CAS  Google Scholar 

  97. Kandilarova SS, Terziyski KV, Draganova AI, Stoyanov DS, Akabaliev VH, Kostianev SS (2017) Response to pharmacological treatment in major depression predicted by electroencephalographic alpha power - a pilot naturalistic study. Folia Med (Plovdiv) 59(3):318–325. https://doi.org/10.1515/folmed-2017-0040

    Article  CAS  PubMed  Google Scholar 

  98. Knott VJ, Telner JI, Lapierre YD, Browne M, Horn ER (1996) Quantitative EEG in the prediction of antidepressant response to imipramine. J Affect Disord 39(3):175–184. https://doi.org/10.1016/0165-0327(96)00003-1

    Article  CAS  PubMed  Google Scholar 

  99. Iosifescu DV, Greenwald S, Devlin P, Mischoulon D, Denninger JW, Alpert JE et al (2009) Frontal EEG predictors of treatment outcome in major depressive disorder. Eur Neuropsychopharmacol 19(11):772–777. https://doi.org/10.1016/j.euroneuro.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  100. Arns M, Drinkenburg WH, Fitzgerald PB, Kenemans JL (2012) Neurophysiological predictors of non-response to rTMS in depression. Brain Stimulation 5(4):569–576. https://doi.org/10.1016/j.brs.2011.12.003

    Article  PubMed  Google Scholar 

  101. Cook IA, Leuchter AF, Witte E, Abrams M, Uijtdehaage SH, Stubbeman W et al (1999) Neurophysiologic predictors of treatment response to fluoxetine in major depression. Psychiatry Res 85(3):263–273

    Article  CAS  PubMed  Google Scholar 

  102. Leuchter AF, Cook IA, Lufkin RB, Dunkin J, Newton TF, Cummings JL et al (1994) Cordance: a new method for assessment of cerebral perfusion and metabolism using quantitative electroencephalography. NeuroImage 1(3):208–219. https://doi.org/10.1006/nimg.1994.1006

    Article  CAS  PubMed  Google Scholar 

  103. Leuchter AF, Cook IA, Uijtdehaage SH, Dunkin J, Lufkin RB, Anderson-Hanley C et al (1997) Brain structure and function and the outcomes of treatment for depression. J Clin Psychiatry 58(Suppl 16):22–31

    PubMed  Google Scholar 

  104. Leuchter AF, Cook IA, Witte EA, Morgan M, Abrams M (2002) Changes in brain function of depressed subjects during treatment with placebo. Am J Psychiatry 159(1):122–129

    Article  PubMed  Google Scholar 

  105. Cook IA, Leuchter AF, Morgan M, Witte E, Stubbeman WF, Abrams M et al (2002) Early changes in prefrontal activity characterize clinical responders to antidepressants. Neuropsychopharmacology 27(1):120–131. https://doi.org/10.1016/S0893-133X(02)00294-4

  106. Stubbeman WF, Leuchter AF, Cook IA, Shurman BD, Morgan M, Gunay I et al (2004) Pretreatment neurophysiologic function and ECT response in depression. J ECT 20(3):142–144. https://doi.org/10.1097/00124509-200409000-00004

    Article  PubMed  Google Scholar 

  107. Cook IA, Leuchter AF, Morgan ML, Stubbeman W, Siegman B, Abrams M (2005) Changes in prefrontal activity characterize clinical response in SSRI nonresponders: a pilot study. J Psychiatr Res 39(5):461–466. doi: S0022-3956(04)00166-9 [pii]. https://doi.org/10.1016/j.jpsychires.2004.12.002

    Article  PubMed  Google Scholar 

  108. Bares M, Brunovsky M, Kopecek M, Stopkova P, Novak T, Kozeny J et al (2007) Changes in QEEG prefrontal cordance as a predictor of response to antidepressants in patients with treatment resistant depressive disorder: a pilot study. J Psychiatr Res 41(3–4):319–325. doi: S0022-3956(06)00118-X [pii]. https://doi.org/10.1016/j.jpsychires.2006.06.005

    Article  PubMed  Google Scholar 

  109. Bares M, Brunovsky M, Novak T, Kopecek M, Stopkova P, Sos P et al (2010) The change of prefrontal QEEG theta cordance as a predictor of response to bupropion treatment in patients who had failed to respond to previous antidepressant treatments. Eur Neuropsychopharmacol 20(7):459–466. doi: S0924-977X(10)00067-2 [pii]. https://doi.org/10.1016/j.euroneuro.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  110. Bares M, Brunovsky M, Kopecek M, Novak T, Stopkova P, Kozeny J et al (2008) Early reduction in prefrontal theta QEEG cordance value predicts response to venlafaxine treatment in patients with resistant depressive disorder. Eur Psychiatry 23(5):350–355. doi: S0924-9338(08)01510-1 [pii]. https://doi.org/10.1016/j.eurpsy.2008.03.001

    Article  PubMed  Google Scholar 

  111. Bares M, Novak T, Brunovsky M, Kopecek M, Stopkova P, Krajca V et al (2012) The change of QEEG prefrontal cordance as a response predictor to antidepressive intervention in bipolar depression. A pilot study. J Psychiatr Res 46(2):219–225. doi: S0022-3956(11)00192-0 [pii]. https://doi.org/10.1016/j.jpsychires.2011.09.006

    Article  PubMed  Google Scholar 

  112. Bares M, Brunovsky M, Novak T, Kopecek M, Stopkova P, Sos P et al (2014) QEEG theta Cordance in the prediction of treatment outcome to prefrontal repetitive transcranial magnetic stimulation or venlafaxine ER in patients with major depressive disorder. Clin EEG Neurosci 46:73. https://doi.org/10.1177/1550059413520442

    Article  PubMed  Google Scholar 

  113. Bares M, Novak T, Vlcek P, Hejzlar M, Brunovsky M (2019) Early change of prefrontal theta cordance and occipital alpha asymmetry in the prediction of responses to antidepressants. Int J Psychophysiol 143:1–8. https://doi.org/10.1016/j.ijpsycho.2019.06.006

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Grant Agency of the Ministry of Education, Science, Research, and Sport of the Slovak Republic (project no. VEGA 2/0118/21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Riečanský .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kandilarova, S., Riečanský, I. (2023). QEEG and ERP Biomarkers of Psychotic and Mood Disorders and Their Treatment Response. In: Stoyanov, D., Draganski, B., Brambilla, P., Lamm, C. (eds) Computational Neuroscience. Neuromethods, vol 199. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3230-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3230-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3229-1

  • Online ISBN: 978-1-0716-3230-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics