Skip to main content

Premises of Computational Neuroscience: Machine Learning Tools and Multivariate Analyses

  • Protocol
  • First Online:
Computational Neuroscience

Part of the book series: Neuromethods ((NM,volume 199))

  • 437 Accesses

Abstract

This chapter provides an overview of multivariate methods and several advanced demonstrations of how these methods can be applied to machine learning applications in mental health. Multivariate methods can help identify relationships between different variables (symptoms, behavior, brain anatomy, brain function, genetics, etc.) that may influence mental health. The methods provide valuable insights into how best to target interventions for a particular brain disorder. When using these methods, it is important to know the advantages, but also the limitations, of each method and how they can be applied in different contexts. In this chapter, we define and explain the concept of multivariate analyses from the theoretical basis to practical issues related to data preparation and interpretation of results. The methods described here include factor analysis, principal component analysis, path analysis, partial least squares, and linear multivariate methods. The chapter includes examples of how multivariate methods have been used, for example, to predict treatment outcomes or identify risk factors for mental disorders. We not only discuss the many challenges of using these methods in computational neuroscience research, such as the need for large and diverse datasets, but also introduce new approaches, such as guided model-based approaches and advanced AI-based approaches, to enrich these mostly data-driven methods and obtain better insight that integrates a priori information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kherif F, Latypova A (2020) Principal component analysis. Machine Learning, 209–225

    Google Scholar 

  2. Tabachnick B, Fidell L, Ullman J (2013) Using multivariate statistics. Pearson, Boston, MA

    Google Scholar 

  3. Friston K, Frith C, Frackowiak R, Turner R (1995) Characterizing dynamic brain responses with fMRI: a multivariate approach. Neuroimage 2:166–172

    Article  CAS  PubMed  Google Scholar 

  4. Lima A, Mridha M, Das S, Kabir M, Islam M, Watanobe Y (2022) A comprehensive survey on the detection, classification, and challenges of neurological disorders. Biology:11. https://www.mdpi.com/2079-7737/11/3/469

  5. Oala L, Fehr J, Gilli L, Balachandran P, Leite A, Calderon-Ramirez S, Li D, Nobis G, Alvarado E, Jaramillo-Gutierrez G, Others (2020) Ml4h auditing: From paper to practice. Mach Learn Health, 280–317

    Google Scholar 

  6. Kherif F, Josse G, Seghier M, Price C (2009) The main sources of intersubject variability in neuronal activation for reading aloud. J Cogn Neurosci 21:654–668

    Article  PubMed  PubMed Central  Google Scholar 

  7. Simon O, Kherif F, Flandin G, Poline J, Riviere D, Mangin J, Le Bihan D, Dehaene S (2004) Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number. Neuroimage 23:1192–1202

    Article  PubMed  Google Scholar 

  8. Melie-Garcia L, Slater D, Ruef A, Sanabria-Diaz G, Preisig M, Kherif F, Draganski B, Lutti A (2018) Networks of myelin covariance. Hum Brain Mapp 39:1532–1554

    Article  PubMed  Google Scholar 

  9. Sanabria-Diaz G, Melie-Garcia L, Draganski B, Demonet J, Kherif F (2021) Apolipoprotein E4 effects on topological brain network organization in mild cognitive impairment. Scientific Reports 11:845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanabria-Diaz G, Demonet J, Rodriguez-Herreros B, Draganski B, Kherif F, Melie-Garcia L (2021) Apolipoprotein E allele 4 effects on Single-Subject Gray Matter Networks in Mild Cognitive Impairment. NeuroImage Clinical 32:102799

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mihalik A, Chapman J, Adams R, Winter N, Ferreira F, Shawe-Taylor J, Mourão-Miranda J, Initiative A, Others (2022) Canonical correlation analysis and partial least squares for identifying brain-behaviour associations: a tutorial and a comparative study. Biol Psychiatry Cogn Neurosci Neuroimag 77(11):1055–1067

    Google Scholar 

  12. Wang H, Smallwood J, Mourao-Miranda J, Xia C, Satterthwaite T, Bassett D, Bzdok D (2020) Finding the needle in a high-dimensional haystack: Canonical correlation analysis for neuroscientists. NeuroImage 216:116745

    Article  PubMed  Google Scholar 

  13. McIntosh A, Lobaugh N (2004) Partial least squares analysis of neuroimaging data: applications and advances. Neuroimage 23:S250–S263

    Article  PubMed  Google Scholar 

  14. Worsley KJ, Poline JB, Friston KJ, Evans AC (1997) Characterizing the response of PET and fMRI data using multivariate linear models. NeuroImage 6(4):305–319

    Article  CAS  PubMed  Google Scholar 

  15. Kherif F, Poline JB, Flandin G, Benali H, Simon O, Dehaene S, et al. (2002) Multivariate model specification for fMRI data. NeuroImage 16(4):1068–1083

    Article  PubMed  Google Scholar 

  16. Zufferey V, Donati A, Popp J, Meuli R, Rossier J, Frackowiak R, Draganski B, Gunten A, Kherif F (2017) Neuroticism, depression, and anxiety traits exacerbate the state of cognitive impairment and hippocampal vulnerability to Alzheimer’s disease. Alzheimer’s Dementia Diagnosis Assessment Disease Monitoring 7:107–114

    Article  PubMed  Google Scholar 

  17. Draganski B, Lutti A, Kherif F (2013) Impact of brain aging and neurodegeneration on cognition: evidence from MRI. Curr Opin Neurol 26:640–645

    Article  PubMed  Google Scholar 

  18. Draganski B, Kherif F, Lutti A (2014) Computational anatomy for studying use-dependant brain plasticity. Front Hum Neurosci 8:380

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kawasaki Y, Suzuki M, Kherif F, Takahashi T, Zhou S-Y, Nakamura K, Matsui M, Sumiyoshi T, Seto H, Kurachi M (2007) Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. NeuroImage 34(1):235–242. ISSN 1053-8119. https://doi.org/10.1016/j.neuroimage.2006.08.018

  20. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1):21–36

    Article  CAS  PubMed  Google Scholar 

  21. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11(6):805–821. ISSN 1053-8119. https://doi.org/10.1006/nimg.2000.0582

  22. Kandilarova S, Stoyanov D, Stoeva M, et al. (2020) Functional MRI in depression—multivariate analysis of emotional task. J Med Biol Eng 40:535–544. https://doi.org/10.1007/s40846-020-00547-2

    Article  Google Scholar 

  23. Stoyanov D, Kandilarova S, Aryutova K, Paunova R, Todeva-Radneva A, Latypova A, Kherif F (2021) Multivariate analysis of structural and functional neuroimaging can inform psychiatric differential diagnosis. Diagnostics 11:19. https://doi.org/10.3390/diagnostics11010019

    Article  Google Scholar 

  24. Paunova R, Kandilarova S, Todeva-Radneva A, Latypova A, Kherif F, Stoyanov D (2022) Application of mass multivariate analysis on neuroimaging data sets for precision diagnostics of depression. Diagnostics 12:469. https://doi.org/10.3390/diagnostics12020469

    Article  PubMed  PubMed Central  Google Scholar 

  25. Taubert M, Roggenhofer E, Melie-Garcia L, Muller S, Lehmann N, Preisig M, Vollenweider P, Marques-Vidal P, Lutti A, Kherif F, Others (2020) Converging patterns of aging-associated brain volume loss and tissue microstructure differences. Neurobiol Aging 88:108–118

    Article  PubMed  Google Scholar 

  26. Marchewka A, Kherif F, Krueger G, Grabowska A, Frackowiak R, Draganski B, Initiative A (2014) Influence of magnetic field strength and image registration strategy on voxel-based morphometry in a study of Alzheimer’s disease. Hum Brain Mapp 35:1865–1874

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferath Kherif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kherif, F., Ramponi, C., Latypova, A., Paunova, R. (2023). Premises of Computational Neuroscience: Machine Learning Tools and Multivariate Analyses. In: Stoyanov, D., Draganski, B., Brambilla, P., Lamm, C. (eds) Computational Neuroscience. Neuromethods, vol 199. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3230-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3230-7_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3229-1

  • Online ISBN: 978-1-0716-3230-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics