Skip to main content

Laboratory Scale Production of Complex Proteins Using Charge Complimentary Nanoenvironments

  • Protocol
  • First Online:
Protein Cages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2671))

  • 454 Accesses

Abstract

Protein refolding is a crucial procedure in bacterial recombinant expression. Aggregation and misfolding are the two challenges that can affect the overall yield and specific activity of the folded proteins. We demonstrated the in vitro use of nanoscale “thermostable exoshells” (tES) to encapsulate, fold and release diverse protein substrates. With tES, the soluble yield, functional yield, and specific activity increased from 2-fold to >100-fold when compared to folding in its absence. On average, the soluble yield was determined to be 6.5 mg/100 mg of tES for a set of 12 diverse substrates evaluated. The electrostatic charge complementation between the tES interior and the protein substrate was considered as the primary determinant for functional folding. We thus describe a useful and simple method for in vitro folding that has been evaluated and implemented in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK (2015) Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Factories 14:1–10

    Article  CAS  Google Scholar 

  2. Ramón A, Señorale M, Marín M (2014) Inclusion bodies: not that bad… . Front Microbiol 5:56

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yamaguchi H, Miyazaki M (2014) Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules 4:235–251

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alibolandi M, Mirzahoseini H (2011) Chemical assistance in refolding of bacterial inclusion bodies. Biochem Res Int 2011:631607

    Article  PubMed  PubMed Central  Google Scholar 

  5. Humer D, Spadiut O (2018) Wanted: more monitoring and control during inclusion body processing. World J Microbiol Biotechnol 34:1–9

    Article  CAS  Google Scholar 

  6. Eiberle MK, Jungbauer A (2010) Technical refolding of proteins: do we have freedom to operate? Biotechnol J 5:547–559

    Article  CAS  PubMed  Google Scholar 

  7. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581

    Article  CAS  PubMed  Google Scholar 

  8. Jhamb K, Jawed A, Sahoo DK (2008) Immobilized chaperones: a productive alternative to refolding of bacterial inclusion body proteins. Process Biochem 43:587–597

    Article  CAS  Google Scholar 

  9. Ma FH, Li C, Liu Y, Shi L (2020) Mimicking molecular chaperones to regulate protein folding. Adv Mater 32:1805945

    Article  CAS  Google Scholar 

  10. Mizutani H, Sugawara H, Buckle AM, Sangawa T, Miyazono K-i, Ohtsuka J, Nagata K, Shojima T, Nosaki S, Xu Y (2018) REFOLDdb: a new and sustainable gateway to experimental protocols for protein refolding. BMC Struct Biol 17:1–8

    Article  Google Scholar 

  11. Deshpande S, Masurkar ND, Girish VM, Desai M, Chakraborty G, Chan JM, Drum CL (2017) Thermostable exoshells fold and stabilize recombinant proteins. Nat Commun 8:1–8

    Article  CAS  Google Scholar 

  12. Sadeghi S, Deshpande S, Girish VM, Aksoyoglu A, Bafna J, Winterhalter M, Kini RM, Lane DP, Drum CL (2021) A general approach to protein folding using thermostable exoshells. Nat Commun 12:1–15

    Article  Google Scholar 

  13. Girish VM, Sadeghi S, Vaidya SS, Kong SN, Drum CL (2021) Nanoencapsulation as a general solution for lyophilization of labile substrates. Pharmaceutics 13:1790

    Article  Google Scholar 

  14. Sadeghi S, Masurkar ND, Girish VM, Deshpande S, Kok Yong Tan W, Yee S, Kang S-A, Lim Y-P, Kai Hua Chow E, Drum CL (2022) Bioorthogonal catalysis for treatment of solid tumors using thermostable, self-assembling, single enzyme nanoparticles and natural product conversion with indole-3-acetic acid. ACS Nano 16:10292–10301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sadeghi S, Vallerinteavide Mavelli G, Vaidya SS, Drum CL (2022) Gastrointestinal tract stabilized protein delivery using disulfide thermostable exoshell system. Int J Mol Sci 23:9856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Voss NR, Gerstein M (2010) 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res 38(suppl_2):W555–W562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pulsipher KW, Bulos JA, Villegas JA, Saven JG, Dmochowski IJ (2018) A protein–protein host–guest complex: thermostable ferritin encapsulating positively supercharged green fluorescent protein. Protein Sci 27:1755–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chakraborti S, Lin T-Y, Glatt S, Heddle JG (2020) Enzyme encapsulation by protein cages. RSC Adv 10:13293–13301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Palmer I, Wingfield PT (2012) Preparation and extraction of insoluble (inclusion-body) proteins from Escherichia coli. Current Protoc Protein Sci 70:6.3. 1–6.3. 20

    Google Scholar 

  20. Sun S, Zhou J-Y, Yang W, Zhang H (2014) Inhibition of protein carbamylation in urea solution using ammonium-containing buffers. Anal Biochem 446:76–81

    Article  CAS  PubMed  Google Scholar 

  21. Wingfield PT (1995) Use of protein folding reagents. Curr Protoc Protein Sci (1):A. 3A. 1–A. 3A. 4

    Google Scholar 

  22. Bornhorst JA, Falke JJ (2000) [16] Purification of proteins using polyhistidine affinity tags. Methods Enzymol 326:245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was funded by NMRC-Clinician Scientist Award, CSAINV17nov012, and A*STAR-AME, A2083c0055. We thank Kong Shik Nie and Siddhesh Sujit Vaidya for their recent contributions to the study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vallerinteavide Mavelli, G., Sadeghi, S., Drum, C.L. (2023). Laboratory Scale Production of Complex Proteins Using Charge Complimentary Nanoenvironments. In: Ueno, T., Lim, S., Xia, K. (eds) Protein Cages. Methods in Molecular Biology, vol 2671. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3222-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3222-2_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3221-5

  • Online ISBN: 978-1-0716-3222-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics