Skip to main content

Time-Resolved Small-Angle X-Ray Scattering of Protein Cage Assembly

  • Protocol
  • First Online:
Protein Cages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2671))

  • 450 Accesses

Abstract

Recent improvements in X-ray detectors and synchrotron light sources have made it possible to measure time-resolved small-angle X-ray scattering (TR-SAXS) at millisecond time resolution. As an example, in this chapter we describe the beamline setup, experimental scheme, and the points that should be noted in stopped-flow TR-SAXS experiments for investigating the ferritin assembly reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fowler AG, Foote AM, Moody MF, Vachette P, Provencher SW, Gabriel A, Bordas J, Koch MHJ (1983) Stopped-flow solution scattering using synchrotron radiation: apparatus, data collection and data analysis. J Biochem Biophys Methods 7:317–329

    Article  CAS  PubMed  Google Scholar 

  2. Ueki T, Hiragi Y, Kataoka M, Inoko Y, Amemiya Y, Izumi Y, Tagawa H, Muroga Y (1985) Aggregation of bovine serum albumin upon cleavage of its disulfide bonds, studied by the time-resolved small-angle x-ray scattering technique with synchrotron radiation. Biophys Chem 23:115–124

    Article  CAS  PubMed  Google Scholar 

  3. Nagamura T, Kurita K, Tokikura E, Kihara H (1985) Stopped-flow X-ray scattering device with a slit-type mixer. J Biochem Biophys Methods 11:277–286

    Article  CAS  PubMed  Google Scholar 

  4. Schmölzer S, Gräbner D, Gradzielski M, Narayanan T (2002) Millisecond-range time-resolved small-angle X-ray scattering studies of micellar transformations. Phys Rev Lett 88:4

    Article  Google Scholar 

  5. Arai M, Ito K, Inobe T, Nakao M, Maki K, Kamagata K, Kihara H, Amemiya Y, Kuwajima K (2002) Fast compaction of α-lactalbumin during folding studied by stopped-flow X-ray scattering. J Mol Biol 321:121–132

    Article  CAS  PubMed  Google Scholar 

  6. Segel DJ, Bachmann A, Hofrichter J, Hodgson KO, Doniach S, Kiefhaber T (1999) Characterization of transient intermediates in lysozyme folding with time-resolved small-angle X-ray scattering. J Mol Biol 288:489–499

    Article  CAS  PubMed  Google Scholar 

  7. Akiyama S, Takahashi S, Kimura T, Ishimori K, Morishima I, Nishikawa Y, Fujisawa T (2002) Conformational landscape of cytochrome c folding studied by microsecond-resolved small-angle x-ray scattering. Proc Natl Acad Sci U S A 99:1329–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kathuria SV, Guo L, Graceffa R, Barrea R, Nobrega RP, Matthews CR, Irving TC, Bilsel O (2011) Minireview: structural insights into early folding events using continuous-flow time-resolved small-angle X-ray scattering. Biopolymers 95:550–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kraft P, Bergamaschi A, Broennimann C, Dinapoli R, Eikenberry EF, Henrich B, Johnson I, Mozzanica A, Schleputz CM, Willmott PR, Schmitt B (2009) Performance of single-photon-counting PILATUS detector modules. J Synchrotron Rad 16:368–375

    Article  CAS  Google Scholar 

  10. Sato D, Ohtomo H, Yamada Y, Hikima T, Kurobe A, Fujiwara K, Ikeguchi M (2016) Ferritin assembly revisited: a time-resolved small-angle X-ray scattering study. Biochemistry 55:287–293

    Article  CAS  PubMed  Google Scholar 

  11. Sato D, Takebe S, Kurobe A, Ohtomo H, Fujiwara K, Ikeguchi M (2016) Electrostatic repulsion during ferritin assembly and its screening by ions. Biochemistry 55:482–488

    Article  CAS  PubMed  Google Scholar 

  12. Asor R, Schlicksup CJ, Zhao Z, Zlotnick A, Raviv U (2020) Rapidly forming early intermediate structures dictate the pathway of capsid assembly. J Am Chem Soc 142:7868–7882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chevreuil M, Lecoq L, Wang S, Gargowitsch L, Nhiri N, Jacquet E, Zinn T, Fieulaine S, Bressanelli S, Tresset G (2020) Nonsymmetrical dynamics of the HBV capsid assembly and disassembly evidenced by their transient species. J Phys Chem B 124:9987–9995

    Article  CAS  PubMed  Google Scholar 

  14. Ohtomo H, Ohtomo M, Sato D, Kurobe A, Sunato A, Matsumura Y, Kihara H, Fujiwara K, Ikeguchi M (2015) A physicochemical and mutational analysis of intersubunit interactions of Escherichia coli ferritin A. Biochemistry 54:6243–6251

    Article  CAS  PubMed  Google Scholar 

  15. Fujisawa T, Inoue K, Oka T, Iwamoto H, Uruga T, Kumasaka T, Inoko Y, Yagi N, Yamamoto M, Ueki T (2000) Small-angle X-ray scattering station at the SPring-8 RIKEN beamline. J Appl Crystallogr 33:797–800

    Article  CAS  Google Scholar 

  16. Huang TC, Toraya H, Blanton TN, Wu Y (1993) X-ray-powder diffraction analysis of silver behenate, a possible low-angle diffraction standard. J Appl Crystallogr 26:180–184

    Article  CAS  Google Scholar 

  17. Hammersley AP (2016) FIT2D: a multi-purpose data reduction, analysis and visualization program. J Appl Crystallogr 49:646–652

    Article  CAS  Google Scholar 

  18. Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New York

    Google Scholar 

  19. Glatter O, Kratky O (eds) (1982) Small angle x-ray scattering. Academic Press, London/New York

    Google Scholar 

  20. Kuwata T, Okada Y, Yamamoto T, Sato D, Fujiwara K, Fukumura T, Ikeguchi M (2019) Structure, function, folding, and aggregation of a neuroferritinopathy-related ferritin variant. Biochemistry 58:2318–2325

    Article  CAS  PubMed  Google Scholar 

  21. Santambrogio P, Levi S, Arosio P, Palagi L, Vecchio G, Lawson DM, Yewdall SJ, Artymiuk PJ, Harrison PM, Jappelli R, Cesareni G (1992) Evidence that a salt bridge in the light chain contributes to the physical stability difference between heavy and light human ferritins. J Biol Chem 267:14077–14083

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The synchrotron radiation SAXS experiments were performed at BL45XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute, Hyogo, Japan (proposals 2011A1133, 2012A1217, 2012B1114, 2013B1392, 2015A1374, 2016B1217, 2017A1403, 2017B1308, 2018A1262, and 2018B1404). This research was supported in part by the Platform for Drug Discovery, Information, and Structural Life Science of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masamichi Ikeguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sato, D., Hikima, T., Ikeguchi, M. (2023). Time-Resolved Small-Angle X-Ray Scattering of Protein Cage Assembly. In: Ueno, T., Lim, S., Xia, K. (eds) Protein Cages. Methods in Molecular Biology, vol 2671. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3222-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3222-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3221-5

  • Online ISBN: 978-1-0716-3222-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics