Skip to main content

Modification and Production of Encapsulin

  • Protocol
  • First Online:
Protein Cages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2671))

Abstract

Encapsulins are a class of protein nanocages that are found in bacteria, which are easy to produce and engineer in E. coli expression systems. The encapsulin from Thermotoga maritima (Tm) is well studied, its structure is available, and without modification it is barely taken up by cells, making it promising candidates for targeted drug delivery. In recent years, encapsulins are engineered and studied for potential use as drug delivery carriers, imaging agents, and as nanoreactors. Consequently, it is important to be able to modify the surface of these encapsulins, for example, by inserting a peptide sequence for targeting or other functions. Ideally, this is combined with high production yields and straightforward purification methods. In this chapter, we describe a method to genetically modify the surface of Tm and Brevibacterium linens (Bl) encapsulins, as model systems, to purify them and characterize the obtain nanocages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones JA, Giessen TW (2020) Advances in encapsulin nanocompartment biology and engineering. Biotechnol Bioeng 118:491–505

    Article  PubMed  PubMed Central  Google Scholar 

  2. McHugh CA, Fontana J, Nemecek D, Cheng N, Aksyuk AA, Heymann JB, Winkler DC, Lam AS, Wall JS, Steven AC, Hoiczyk E (2014) A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress. EMBO J 33:1–16

    Article  Google Scholar 

  3. Akita F, Chong KT, Tanaka H, Yamashita E, Miyazaki N, Nakaishi Y, Suzuki M, Namba K, Ono Y, Tsukihara T, Nakagawa A (2007) The crystal structure of a virus-like particle from the hyperthermophilic archaeon Pyrococcus furiosus provides insight into the evolution of viruses. J Mol Biol 368:1469–1483

    Article  CAS  PubMed  Google Scholar 

  4. Sutter M, Boehringer D, Gutmann S, Günther S, Prangishvili D, Loessner MJ, Stetter KO, Weber-Ban E, Ban N (2008) Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 15:939–947

    Article  CAS  PubMed  Google Scholar 

  5. Wiryaman T, Toor N (2022) Recent advances in the structural biology of encapsulin bacterial nanocompartments. J. Struct. Biol. X 6:100062

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Giessen TW (2016) Encapsulins: microbial nanocompartments with applications in biomedicine, nanobiotechnology and materials science. Curr Opin Chem Biol 34:1–10

    Article  CAS  PubMed  Google Scholar 

  7. Putri RM, Allende-Ballestero C, Luque D, Klem R, Rousou KA, Liu A, Traulsen CHH, Rurup WF, Koay MST, Castón JR, Cornelissen JJLM (2017) Structural characterization of native and modified encapsulins as nanoplatforms for in vitro catalysis and cellular uptake. ACS Nano 11:12796–12804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams EM, Jung SM, Coffman JL, Lutz S (2018) Pore engineering for enhanced mass transport in encapsulin nanocompartments. ACS Synth Biol 7:2514

    Article  CAS  PubMed  Google Scholar 

  9. Adamson LSR, Tasneem N, Andreas MP, Close W, Jenner EN, Szyszka TN, Young R, Cheah LC, Norman A, MacDermott-Opeskin HI, O’Mara ML, Sainsbury F, Giessen TW, Lau YH (2022) Pore structure controls stability and molecular flux in engineered protein cages. Sci Adv 8:1–13

    Article  Google Scholar 

  10. Moon H, Lee J, Kim H, Heo S, Min J, Kang S (2014) Genetically engineering encapsulin protein cage nanoparticle as a SCC-7 cell targeting optical nanoprobe. Biomater Res 18:1–7

    Article  Google Scholar 

  11. Lagoutte P, Mignon C, Stadthagen G, Potisopon S, Donnat S, Mast J, Lugari A, Werle B (2018) Simultaneous surface display and cargo loading of encapsulin nanocompartments and their use for rational vaccine design. Vaccine 36:3622–3628

    Article  CAS  PubMed  Google Scholar 

  12. Van de Steen A, Khalife R, Colant N, Mustafa Khan H, Deveikis M, Charalambous S, Robinson CM, Dabas R, Esteban Serna S, Catana DA, Pildish K, Kalinovskiy V, Gustafsson K, Frank S (2021) Bioengineering bacterial encapsulin nanocompartments as targeted drug delivery system. Synth Syst Biotechnol 6:231–241

    Article  PubMed  PubMed Central  Google Scholar 

  13. Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D (2022) Protein cages: from fundamentals to advanced applications. Chem Rev. https://doi.org/10.1021/acs.chemrev.1c00877

  14. Gabashvili AN, Vodopyanov SS, Chmelyuk NS, Sarkisova VA, Fedotov KA, Efremova MV, Abakumov MA (2021) Encapsulin based self-assembling iron-containing protein nanoparticles for stem cells MRI visualization. Int J Mol Sci 22:12275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Michel-Souzy S, Hamelmann NM, Zarzuela-Pura S, Paulusse JMJ, Cornelissen JJLM (2021) Introduction of surface loops as a tool for encapsulin functionalization. Biomacromolecules 22:5234–5242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rurup WF, Snijder J, Koay MST, Heck AJR, Cornelissen JJLM (2014) Self-sorting of foreign proteins in a bacterial nanocompartment. J Am Chem Soc 136:3828–3832

    Article  CAS  PubMed  Google Scholar 

  17. Moon H, Lee J, Min J, Kang S (2014) Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform. Biomacromolecules 15:3794–3801

    Article  CAS  PubMed  Google Scholar 

  18. Choi B, Moon H, Hong SJ, Shin C, Do Y, Ryu S, Kang S (2016) effective delivery of antigen-encapsulin nanoparticle fusions to dendritic cells leads to antigen-specific cytotoxic T cell activation and tumor rejection. ACS Nano 10:7339–7350

    Article  CAS  PubMed  Google Scholar 

  19. Bae Y, Kim GJ, Kim H, Park SG, Jung HS, Kang S (2018) Engineering tunable dual functional protein cage nanoparticles using bacterial superglue. Biomacromolecules 19:2896–2904

    Article  CAS  PubMed  Google Scholar 

  20. Lee T, Carpenter TS, D’haeseleer P, Savage DF, Yung MC (2019) Encapsulin carrier proteins for enhanced expression of antimicrobial peptides. Biotechnol Bioeng 117:603–613

    Article  PubMed  Google Scholar 

  21. Jeong JY, Yim HS, Ryu JY, Lee HS, Lee JH, Seen DS, Kang SG (2012) One-step sequence-and ligation-independent cloning as a rapid and versatile cloning method for functional genomics Studies. Appl Environ Microbiol 78:5440–5443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandra Michel-Souzy or Jeroen J. L. M. Cornelissen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Michel-Souzy, S., Cornelissen, J.J.L.M. (2023). Modification and Production of Encapsulin. In: Ueno, T., Lim, S., Xia, K. (eds) Protein Cages. Methods in Molecular Biology, vol 2671. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3222-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3222-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3221-5

  • Online ISBN: 978-1-0716-3222-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics