Skip to main content

Chemical Labeling of Protein 4′-Phosphopantetheinylation in Surfactin-Producing Nonribosomal Peptide Synthetases

  • Protocol
  • First Online:
Non-Ribosomal Peptide Biosynthesis and Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2670))

Abstract

4′-Phosphopantetheinylation is an essential posttranslational modification of the primary and secondary metabolic pathways in prokaryotes and eukaryotes. Several peptide-based natural products are biosynthesized by large, multifunctional enzymes known as nonribosomal peptide synthetases (NRPSs), responsible for producing virulence factors and many pharmaceuticals. The thiolation (T) domain serves as a covalent tether for substrates and intermediates in nonribosomal peptide biosynthesis and must be posttranslationally modified with a 4′-phosphopantetheinyl group. To detect 4′-phosphopantetheinylation of NRPS in bacterial proteomes, we developed a 5′-(vinylsulfonylaminodeoxy)adenosine scaffold with a clickable functionality, enabling effective chemical labeling of 4′-phosphopantethylated NRPSs. In this chapter, we describe the design and synthesis of an activity-based protein profiling probe and summarize our work toward developing a series of protocols for the labeling and visualization of 4′-phosphopantetheinylation of endogenous NRPSs in complex proteomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beld J, Sonnenschein EC, Vickery CR et al (2014) The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 31:61–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hur GH, Vickery CR, Burkart MD (2012) Explorations of catalytic domains in non- ribosomal peptide synthetase enzymology. Nat Prod Rep 10:1074–1098

    Article  Google Scholar 

  3. Minandri F, Imperi F, Frangipani E et al (2016) Role of iron systems in Pseudomonas aeruginosa virulenceand airway infection. Infect Immum 84:2324–2335

    Article  CAS  Google Scholar 

  4. Leblanc C, Prudhomme T, Tabouret G et al (2012) 4′-Phosphopantetheunyl transferase PptT, a new drug target required for Mycobacterium tuberculosis growth and persistence in vivo. PLoS Pathog 8:e10003097

    Article  Google Scholar 

  5. Kasai S, Ishikawa F, Suzuki T et al (2016) A chemical proteomic probe for detecting native carrier protein motifs in nonribosomal peptide synthetases. Chem Commun 52:14129–14132

    Article  CAS  Google Scholar 

  6. Qiao C, Wilson DJ, Bennett EM et al (2007) A mechanism-based aryl carrier protein/thiolation domain affinity probe. J Am Chem Soc 129:6350–6351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sundlov JA, Shi C, Wilson DJ et al (2012) Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains. Chem Biol 19:188–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Konno S, Ishikawa F, Suzuki T et al (2015) Active site-directed proteomic probes for adenylation domains in nonribosomal peptide synthetases. Chem Commun 51:2262–2265

    Article  CAS  Google Scholar 

  9. Ishikawa F, Konno S, Suzuki T et al (2015) Profiling nonribosomal peptide synthetase activities using chemical proteomic probes for adenylation domains. ACS Chem Biol 10:1989–1997

    Article  CAS  PubMed  Google Scholar 

  10. Ishikawa F, Kasai S, Kakeya H et al (2017) Visualizing the adenylation activities and protein-protein interactions of aryl acid adenylating enzymes. Chembiochem 18:2199–2204

    Article  CAS  PubMed  Google Scholar 

  11. Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77:383–414

    Article  CAS  PubMed  Google Scholar 

  12. Sanman LE, Bogyo M (2014) Activity-based profiling of proteases. Annu Rev Biochem 83:249–273

    Article  CAS  PubMed  Google Scholar 

  13. Rivero MR, Alonso I, Carretero JC (2004) Vinyl sulfoxides as stereochemical controllers in intermolecular Pauson-Khand reactions: applications to the enantioselective synthesis of natural cyclopentanoids. Chem Eur J 10:5443–5459

    Article  CAS  Google Scholar 

  14. Skiles JW, Miao C, Sorcek R et al (1992) Inhibition of human leukocytoelastase by N-substituted peptides containing α,α-difluorostatone residues at P1. J Med Chem 35:4795–4808

    Article  CAS  PubMed  Google Scholar 

  15. Reuter DC, McIntosh JE, Guinn AC et al (2003) Synthesis of vinyl sulfonamides using the Horner reaction. Synthesis 15:2321–2324

    Article  Google Scholar 

  16. Wei Y-H, Wang L-F et al (2004) Optimization iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Biotechnol Prog 20:979–983

    Article  CAS  PubMed  Google Scholar 

  17. Yeh M-S, Wei Y-H, Chang JS (2005) Enhanced production of surfactin from Bacillus subtilis by addition of solid carriers. Biotechnol Prog 21:1329–1334

    Article  CAS  PubMed  Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  19. Augenstein DC, Thrasher KD, Sinskey AJ et al (1974) Optimization in the recovery of a labile intracellular enzyme. Biotechnol Bioeng 16:1433–1447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Grants-in-Aid for Research (C) (19 K05722 to F.I.) from JSPS and by grants from the Noda Institute for Scientific Research (F.I.), Research Foundation for Pharmaceutical Sciences (F.I.), Japan Foundation for Applied Enzymology (F.I.), and Institute Foundation for Science, Osaka (IFO) (F.I.). We are also thankful for the financial support provided by the Antiaging Project for Private Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fumihiro Ishikawa or Genzoh Tanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ishikawa, F., Tanabe, G. (2023). Chemical Labeling of Protein 4′-Phosphopantetheinylation in Surfactin-Producing Nonribosomal Peptide Synthetases. In: Burkart, M., Ishikawa, F. (eds) Non-Ribosomal Peptide Biosynthesis and Engineering. Methods in Molecular Biology, vol 2670. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3214-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3214-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3213-0

  • Online ISBN: 978-1-0716-3214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics