Skip to main content

Phalloidin Staining for F-Actin in Hepatic Stellate Cells

  • Protocol
  • First Online:
Hepatic Stellate Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2669))

Abstract

During the development of liver fibrosis, hepatic stellate cells undergo a transition from a quiescent phenotype into a proliferative, fibrogenic, and contractile, α-smooth muscle actin-positive myofibroblast. These cells acquire properties that are strongly associated with the reorganization of the actin cytoskeleton. Actin possesses a unique ability to polymerize into filamentous actin (F-actin) form its monomeric globular state (G-actin). F-actin can form robust actin bundles and cytoskeletal networks by interacting with a number of actin-binding proteins that provide important mechanical and structural support for a multitude of cellular processes including intracellular transport, cell motility, polarity, cell shape, gene regulation, and signal transduction. Therefore, stains with actin-specific antibodies and phalloidin conjugates for actin staining are widely used to visualize actin structures in myofibroblasts. Here we present an optimized protocol for F-actin staining for hepatic stellate cells using a fluorescent phalloidin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169–186. https://doi.org/10.1146/annurev-biophys-042910-155359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Melak M, Plessner M, Grosse R (2017) Actin visualization at a glance. J Cell Sci 130(3):525–530. https://doi.org/10.1242/jcs.189068

    Article  PubMed  Google Scholar 

  3. Sandbo N, Dulin N (2011) Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl Res 158(4):181–196. https://doi.org/10.1016/j.trsl.2011.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perrin BJ, Ervasti JM (2010) The actin gene family: function follows isoform. Cytoskeleton (Hoboken) 67(10):630–634. https://doi.org/10.1002/cm.20475

    Article  CAS  PubMed  Google Scholar 

  5. Khaitlina SY (2001) Functional specificity of actin isoforms. Int Rev Cytol 202:35–98. https://doi.org/10.1016/s0074-7696(01)02003-4

    Article  CAS  PubMed  Google Scholar 

  6. Doolittle LK, Rosen MK, Padrick SB (2013) Measurement and analysis of in vitro actin polymerization. Methods Mol Biol 1046:273–293. https://doi.org/10.1007/978-1-62703-538-5_16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ramadori G, Veit T, Schwögler S, Dienes HP, Knittel T, Rieder H, Meyer zum Büschenfelde KH. (1999) Expression of the gene of the alpha-smooth muscle-actin isoform in rat liver and in rat fat-storing (ITO) cells. Virchows Arch B Cell Pathol Incl Mol Pathol 59(6):349–357. https://doi.org/10.1007/BF02899424

    Article  Google Scholar 

  8. Rockey DC, Weymouth N, Shi Z. (2013) Smooth muscle α actin (Acta2) and myofibroblast function during hepatic wound healing. PLoS One 8(10):e77166. https://doi.org/10.1371/journal.pone.0077166

  9. Rockey DC, Du Q, Weymouth ND, Shi Z (2019) Smooth muscle α-actin deficiency leads to decreased liver fibrosis via impaired cytoskeletal signaling in hepatic stellate cells. Am J Pathol 189(11):2209–2220. https://doi.org/10.1016/j.ajpath.2019.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schildmeyer LA, Braun R, Taffet G, Debiasi M, Burns AE, Bradley A, Schwartz RJ (2000) Impaired vascular contractility and blood pressure homeostasis in the smooth muscle alpha-actin null mouse. FASEB J 14(14):2213–2220. https://doi.org/10.1096/fj.99-0927com

    Article  CAS  PubMed  Google Scholar 

  11. Weiskirchen R, Weiskirchen S, Tacke F (2019) Organ and tissue fibrosis: molecular signals, cellular mechanisms and translational implications. Mol Asp Med 65:2–15. https://doi.org/10.1016/j.mam.2018.06.003

    Article  CAS  Google Scholar 

  12. Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R (2021) Cellular mechanisms of liver fibrosis. Front Pharmacol 12:671640. https://doi.org/10.3389/fphar.2021.671640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Herrmann J, Borkham-Kamphorst E, Haas U, Van de Leur E, Fraga MF, Esteller M, Gressner AM, Weiskirchen R (2006) The expression of CSRP2 encoding the LIM domain protein CRP2 is mediated by TGF-beta in smooth muscle and hepatic stellate cells. Biochem Biophys Res Commun 345(4):1526–1535. https://doi.org/10.1016/j.bbrc.2006.05.076

    Article  CAS  PubMed  Google Scholar 

  14. Tag CG, Sauer-Lehnen S, Weiskirchen S, Borkham-Kamphorst E, Tolba RH, Tacke F, Weiskirchen R (2015) Bile duct ligation in mice: induction of inflammatory liver injury and fibrosis by obstructive cholestasis. J Vis Exp 96:52438. https://doi.org/10.3791/52438

    Article  CAS  Google Scholar 

  15. Wong JH (2013) Chapter 25 – fungal toxins. In: Handbook of biological active peptides, 2nd edn. Elsevier, pp 166–168. https://doi.org/10.1016/B978-0-12-385095-9.00025-7

    Chapter  Google Scholar 

  16. Schneider SM, Wiegang TJ (2017) Chapter 66: toxic mushroom ingestions. In: Auerbach’s widlerness medicine, 7th edn. Elsevier, pp 1464–1490.e3. ISBN: 978-0323359429

    Google Scholar 

  17. Wulf E, Deboben A, Bautz FA, Faulstich H, Wieland T (1979) Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci USA 76(9):4498–4502. https://doi.org/10.1073/pnas.76.9.4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weiskirchen R, Gressner AM (2005) Isolation and culture of hepatic stellate cells. Methods Mol Med 117:99–113. https://doi.org/10.1385/1-59259-940-0:099

    Article  CAS  PubMed  Google Scholar 

  19. Bartneck M, Warzecha KT, Tag CG, Sauer-Lehnen S, Heymann F, Trautwein C, Weiskirchen R, Tacke F (2015) Isolation and time lapse microscopy of highly pure hepatic stellate cells. Anal Cell Pathol (Amst) 2015:417023. https://doi.org/10.1155/2015/417023

    Article  PubMed  Google Scholar 

  20. Weiskirchen S, Tag CG, Sauer-Lehnen S, Tacke F, Weiskirchen R (2017) Isolation and culture of primary murine hepatic stellate cells. Methods Mol Biol 1627:165–191. https://doi.org/10.1007/978-1-4939-7113-8_11

    Article  CAS  PubMed  Google Scholar 

  21. Nanda I, Steinlein C, Haaf T, Buhl EM, Grimm DG, Friedman SL, Meurer SK, Schröder SK, Weiskirchen R (2022) Genetic characterization of rat hepatic stellate cell line HSC-T6 for in vitro cell line authentication. Cell 11(11):1783. https://doi.org/10.3390/cells11111783

    Article  CAS  Google Scholar 

  22. Nanda I, Schröder SK, Steinlein C, Haaf T, Buhl EM, Grimm DG, Weiskirchen R (2022) Rat hepatic stellate cell line CFSC-2G: genetic markers and short tandem repeat profile useful for cell line authentication. Cell 11(18):2900. https://doi.org/10.3390/cells11182900

    Article  CAS  Google Scholar 

  23. Sauvant P, Sapin V, Abergel A, Schmidt CK, Blanchon L, Alexandre-Gouabau MC, Rosenbaum J, Bommelaer G, Rock E, Dastugue B, Nau H, Azaïs-Braesco V (2002) PAV-1, a new rat hepatic stellate cell line converts retinol into retinoic acid, a process altered by ethanol. Int J Biochem Cell Biol 34(8):1017–1029. https://doi.org/10.1016/s1357-2725(02)00023-7

    Article  CAS  PubMed  Google Scholar 

  24. Krenkel O, Hundertmark J, Ritz TP, Weiskirchen R, Tacke F (2019) Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis. Cell 8(5):503. https://doi.org/10.3390/cells8050503

    Article  CAS  Google Scholar 

  25. Listenberger LL, Brown DA (2007) Fluorescent detection of lipid droplets and associated proteins. Curr Protoc Cell Biol. Chapter 24: Unit 24.2. https://doi.org/10.1002/0471143030.cb2402s35

  26. Wieland T (1963) Chemical and toxicological studies with cyclopeptides of amanita phalloides. Pure Appl Chem 6(3):339–350. https://doi.org/10.1351/pac196306030339

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work from Dr. Weiskirchen’s laboratory is supported by grants from the German Research Foundation (WE2554/13-1, WE2554/15-1, WE2554/17-1) and a grant from the Interdisciplinary Centre for Clinical Research within the faculty of Medicine at the RWTH Aachen University (grant PTD 1-5). The authors are grateful to Scott L. Friedman, Marcus Rojkind, and Patrick Sauvant for providing the established rat hepatic stellate cell lines HSC-T6, CFSC-2G, and PAV-1. We also thank Thomas Bauder for providing an image of the green death cap Amanita phalloides.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sarah K. Schröder or Ralf Weiskirchen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schröder, S.K., Tag, C.G., Weiskirchen, S., Weiskirchen, R. (2023). Phalloidin Staining for F-Actin in Hepatic Stellate Cells. In: Weiskirchen, R., Friedman, S.L. (eds) Hepatic Stellate Cells. Methods in Molecular Biology, vol 2669. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3207-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3207-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3206-2

  • Online ISBN: 978-1-0716-3207-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics