Skip to main content

Chemical Probing of RNA Structure In Vivo Using SHAPE-MaP and DMS-MaP

  • Protocol
  • First Online:
RNA-Protein Complexes and Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2666))

Abstract

The functional roles of RNAs are often regulated by their structure. Selective 2′ hydroxyl acylation analyzed by primer extension (SHAPE) and dimethyl sulfate (DMS) base reactivity can be employed to investigate the flexibility of nucleotides and correlate it to the constraints imparted by base-pairing and/or protein-binding. In vivo, a multitude of proteins could bind an RNA molecule, regulating its structure and function. Hence, to obtain a more comprehensive view of the RNA structure–function relationship in vivo, it may be required to characterize both the RNA structure and the RNA-protein interaction network. In this chapter, we describe methods for characterizing the in vivo nucleotide flexibility of RNA in cells by SHAPE-MaP (SHAPE by Mutational Profiling) and DMS-MaP. In another chapter, we will discuss the characterization of RNA-protein interaction network by RNP-MaP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B, Jung JW, Kuchelmeister HY, Batista PJ, Torre EA, Kool ET, Chang HY (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519:486–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ding Y, Tang Y, Kwok CK, Zhang Y, Bevilacqua PC, Assmann SM (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505:696–700

    Article  CAS  PubMed  Google Scholar 

  3. Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505(7485):701–705. https://doi.org/10.1038/nature12894

    Article  CAS  PubMed  Google Scholar 

  4. Saha K, England W, Fernandez MM, Biswas T, Spitale RC, Ghosh G (2020) Structural disruption of exonic stem–loops immediately upstream of the intron regulates mammalian splicing. Nucleic Acids Res 48(11):6294–6309. https://doi.org/10.1093/nar/gkaa358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saha K, Fernandez MM, Biswas T, Joseph S, Ghosh G (2021) Discovery of a pre-mRNA structural scaffold as a contributor to the mammalian splicing code. Nucleic Acids Res 49(12):7103–7121. https://doi.org/10.1093/nar/gkab533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mustoe AM, Busan S, Rice GM, Hajdin CE, Peterson BK, Ruda VM, Kubica N, Nutiu R, Baryza JL, Weeks KM (2018) Pervasive regulatory functions of mRNA structure revealed by high-resolution SHAPE probing. Cell 173(1):181–195.e118. https://doi.org/10.1016/j.cell.2018.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cléry A, Krepl M, Nguyen CKX, Moursy A, Jorjani H, Katsantoni M, Okoniewski M, Mittal N, Zavolan M, Sponer J, Allain FH (2021) Structure of SRSF1 RRM1 bound to RNA reveals an unexpected bimodal mode of interaction and explains its involvement in SMN1 exon7 splicing. Nat Commun 12(1):428. https://doi.org/10.1038/s41467-020-20481-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saldi T, Riemondy K, Erickson B, Bentley DL (2021) Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing. Mol Cell 81(8):1789–1801.e1785. https://doi.org/10.1016/j.molcel.2021.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Busan S, Weidmann CA, Sengupta A, Weeks KM (2019) Guidelines for SHAPE reagent choice and detection strategy for RNA structure probing studies. Biochemistry 58(23):2655–2664. https://doi.org/10.1021/acs.biochem.8b01218

    Article  CAS  PubMed  Google Scholar 

  10. Marinus T, Fessler AB, Ogle CA, Incarnato D (2021) A novel SHAPE reagent enables the analysis of RNA structure in living cells with unprecedented accuracy. Nucleic Acids Res 49(6):e34. https://doi.org/10.1093/nar/gkaa1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tomezsko PJ, Corbin VDA, Gupta P, Swaminathan H, Glasgow M, Persad S, Edwards MD, McIntosh L, Papenfuss AT, Emery A, Swanstrom R, Zang T, Lan TCT, Bieniasz P, Kuritzkes DR, Tsibris A, Rouskin S (2020) Determination of RNA structural diversity and its role in HIV-1 RNA splicing. Nature 582(7812):438–442. https://doi.org/10.1038/s41586-020-2253-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mustoe AM, Lama NN, Irving PS, Olson SW, Weeks KM (2019) RNA base-pairing complexity in living cells visualized by correlated chemical probing. Proc Natl Acad Sci U S A 116(49):24574–24582. https://doi.org/10.1073/pnas.1905491116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smola MJ, Weeks KM (2018) In-cell RNA structure probing with SHAPE-MaP. Nat Protoc 13(6):1181–1195. https://doi.org/10.1038/nprot.2018.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McGinnis JL, Dunkle JA, Cate JH, Weeks KM (2012) The mechanisms of RNA SHAPE chemistry. J Am Chem Soc 134(15):6617–6624. https://doi.org/10.1021/ja2104075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barker SL, LaRocca PJ (1994) Method of production and control of a commercial tissue culture surface. J Tissue Cult Methods 16(3):151–153. https://doi.org/10.1007/BF01540642

    Article  Google Scholar 

  16. Zubradt M, Gupta P, Persad S, Lambowitz AM, Weissman JS, Rouskin S (2017) DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat Methods 14:75–82

    Article  CAS  PubMed  Google Scholar 

  17. Busan S, Weeks KM (2018) Accurate detection of chemical modifications in RNA by mutational profiling (MaP) with ShapeMapper 2. RNA 24(2):143–148. https://doi.org/10.1261/rna.061945.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Siegfried NA, Busan S, Rice GM, Nelson JA, Weeks KM (2014) RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat Methods 11(9):959–965. https://doi.org/10.1038/nmeth.3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gourisankar Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saha, K., Ghosh, G. (2023). Chemical Probing of RNA Structure In Vivo Using SHAPE-MaP and DMS-MaP. In: Lin, RJ. (eds) RNA-Protein Complexes and Interactions. Methods in Molecular Biology, vol 2666. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3191-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3191-1_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3190-4

  • Online ISBN: 978-1-0716-3191-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics