Skip to main content

In Vitro Reconstitution of Pseudouridylation Catalyzed by Human Box H/ACA Ribonucleoprotein Particles

  • Protocol
  • First Online:
RNA-Protein Complexes and Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2666))

Abstract

Pseudouridine (Ψ) is the most common chemical modification in RNA. In eukaryotes and archaea, pseudouridine synthases, mainly guided by box H/ACA snoRNAs, convert uridine to Ψ. Ψ stabilizes RNA structure and alters RNA-RNA and RNA–protein interactions, conferring important roles in gene expression. Notably, several Ψ-linked human diseases have been identified over the years. In addition, Ψ has also been extensively used in developing mRNA vaccines. Furthermore, it has been shown that pseudouridylation can be site-specifically directed to modify specific nonsense codons, leading to nonsense suppression. All of these, together with a need to better understand the specific functions of Ψs, have motivated the development of in vitro pseudouridylation assays using purified and reconstituted box H/ACA RNPs. Here, we describe an in vitro system for box H/ACA RNA-guided RNA pseudouridylation using human cell extracts. We show that a half guide RNA (only one hairpin) is just as functionally competent as the full-length guide RNA (two hairpins) in guiding site-specific pseudouridylation in the human cell extracts. This discovery offers the opportunity for direct delivery of a short guide RNA to human cells to promote site-specific nonsense suppression and therefore has potential clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen K, Zhao BS, He C (2016) Nucleic acid modifications in regulation of gene expression. Cell Chem Biol 23:74–85. https://doi.org/10.1016/j.chembiol.2015.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gilbert WV, Bell TA, Schaening C (2016) Messenger RNA modifications: form, distribution, and function. Science 352:1408–1412. https://doi.org/10.1126/science.aad8711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cohn WE, Volkin E (1951) Nucleoside-5′-phosphates from ribonucleic acid. Nature 167:483–484. https://doi.org/10.1038/167483a0

    Article  CAS  Google Scholar 

  4. Davis FF, Allen FW (1957) Ribonucleic acids from yeast which contain a fifth nucleotide. J Biol Chem 227:907–915

    Article  CAS  PubMed  Google Scholar 

  5. Zaringhalam M, Papavasiliou FN (2016) Pseudouridylation meets next-generation sequencing. Methods 107:63–72. https://doi.org/10.1016/j.ymeth.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  6. Kierzek E, Malgowska M, Lisowiec J et al (2014) The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res 42:3492–3501. https://doi.org/10.1093/nar/gkt1330

    Article  CAS  PubMed  Google Scholar 

  7. Borchardt EK, Martinez NM, Gilbert WV (2020) Regulation and function of RNA Pseudouridylation in human cells. Annu Rev Genet 54:309. https://doi.org/10.1146/annurev-genet-112618-043830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davis DR (1995) Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res 23:5020–5026. https://doi.org/10.1093/nar/23.24.5020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deb I, Popenda Ł, Sarzyńska J et al (2019) Computational and NMR studies of RNA duplexes with an internal pseudouridine-adenosine base pair. Sci Rep 9:16278. https://doi.org/10.1038/s41598-019-52637-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caton EA, Kelly EK, Kamalampeta R, Kothe U (2018) Efficient RNA pseudouridylation by eukaryotic H/ACA ribonucleoproteins requires high affinity binding and correct positioning of guide RNA. Nucleic Acids Res 46:905–916. https://doi.org/10.1093/nar/gkx1167

    Article  CAS  PubMed  Google Scholar 

  11. Veerareddygari GR, Singh SK, Mueller EG (2016) The Pseudouridine synthases proceed through a Glycal intermediate. J Am Chem Soc 138:7852–7855. https://doi.org/10.1021/jacs.6b04491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Karijolich J, Yu Y-T (2011) Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474:395–398. https://doi.org/10.1038/nature10165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adachi H, Yu Y-T (2020) Pseudouridine-mediated stop codon readthrough in S. cerevisiae is sequence context-independent. RNA 26:1247–1256. https://doi.org/10.1261/rna.076042.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fernández IS, Ng CL, Kelley AC et al (2013) Unusual base pairing during the decoding of a stop codon by the ribosome. Nature 500:107–110. https://doi.org/10.1038/nature12302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang C, Wu G, Yu Y-T (2016) Purification and functional reconstitution of box H/ACA ribonucleoprotein particles. Methods Mol Biol 1421:97–109. https://doi.org/10.1007/978-1-4939-3591-8_9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma X, Yang C, Alexandrov A et al (2005) Pseudouridylation of yeast U2 snRNA is catalyzed by either an RNA-guided or RNA-independent mechanism. EMBO J 24:2403–2413. https://doi.org/10.1038/sj.emboj.7600718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xiao M, Yang C, Schattner P, Yu Y-T (2009) Functionality and substrate specificity of human box H/ACA guide RNAs. RNA 15:176–186. https://doi.org/10.1261/rna.1361509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bortolin ML, Ganot P, Kiss T (1999) Elements essential for accumulation and function of small nucleolar RNAs directing site-specific pseudouridylation of ribosomal RNAs. EMBO J 18:457–469. https://doi.org/10.1093/emboj/18.2.457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the members of the Yu lab (past and present) for inspiring discussions during development of the method. The work performed in the Yu lab was supported by grants GM138387 and CA241111 from the US National Institutes of Health and grant CFF YU20G0 from the Cystic Fibrosis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Adachi, H., Chen, J.L., Yin, Q., Morais, P., Yu, YT. (2023). In Vitro Reconstitution of Pseudouridylation Catalyzed by Human Box H/ACA Ribonucleoprotein Particles. In: Lin, RJ. (eds) RNA-Protein Complexes and Interactions. Methods in Molecular Biology, vol 2666. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3191-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3191-1_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3190-4

  • Online ISBN: 978-1-0716-3191-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics