Skip to main content

Reconstitution of Mammalian Mitochondrial Translation System Capable of Long Polypeptide Synthesis

  • Protocol
  • First Online:
The Mitoribosome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2661))

Abstract

Mammalian mitochondria have their own dedicated protein synthesis system, which produces 13 essential subunits of the oxidative phosphorylation complexes. Here, we describe the in vitro reconstitution of the mammalian mitochondrial translation system, utilizing purified recombinant mitochondrial translation factors, 55S ribosomes from pig liver mitochondria, and a heterologous yeast tRNA mixture. The system is capable of translating leaderless mRNAs encoding model proteins, such as nanoluciferase with a molecular weight of 19 kDa, and is readily applicable for in vitro evaluations of mRNAs and nascent peptide chain sequences, as well as factors and small molecules that affect mitochondrial translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aibara S, Singh V, Modelska A et al (2020) Structural basis of mitochondrial translation. elife 9:e58362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kummer E, Ban NE (2021) Mechanisms and regulation of protein synthesis in mitochondria. Nat Rev Mol Cell Biol 22:307–325

    Article  CAS  PubMed  Google Scholar 

  3. Itoh Y, Andrell J, Choi A et al (2021) Mechanism of membrane-tethered mitochondrial protein synthesis. Science 371:846–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Suzuki T, Nagao A, Suzuki T (2011) Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet 45:299–329

    Article  CAS  PubMed  Google Scholar 

  5. Lee M, Matsunaga N, Akabane S et al (2021) Reconstitution of mammalian mitochondrial translation system capable of correct initiation and long polypeptide synthesis from leaderless mRNA. Nucleic Acids Res 49:371–382

    Article  CAS  PubMed  Google Scholar 

  6. Christian BE, Spremulli LL (2012) Mechanism of protein biosynthesis in mammalian mitochondria. Biochim Biophys Acta 1819:1035–1054

    Article  CAS  PubMed  Google Scholar 

  7. Ayyub SA, Varshney U (2020) Translation initiation in mammalian mitochondria- a prokaryotic perspective. RNA Biol 17:165–175

    Article  CAS  PubMed  Google Scholar 

  8. Tsuboi M, Morita H, Nozaki Y et al (2009) EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis. Mol Cell 35:502–510

    Article  CAS  PubMed  Google Scholar 

  9. D’Souza AR, Minczuk M (2018) Mitochondrial transcription and translation: overview. Essays Biochem 62:309–320

    Article  PubMed  PubMed Central  Google Scholar 

  10. Silva-Pinheiro P, Minczuk M (2022) The potential of mitochondrial genome engineering. Nat Rev Genet 23:199–214

    Article  CAS  PubMed  Google Scholar 

  11. Cruz-Zaragoza LD, Dennerlein S, Linden A et al (2021) An in vitro system to silence mitochondrial gene expression. Cell 184:5824–5837

    Article  CAS  PubMed  Google Scholar 

  12. Tamaru D, Amikura K, Shimizu Y et al (2018) Reconstitution of 30S ribosomal subunits in vitro using ribosome biogenesis factors. RNA 24:1512–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shimizu Y, Ueda T (2010) PURE technology. Methods Mol Biol 607:11–21

    Article  CAS  PubMed  Google Scholar 

  14. Nagai R, Xu YC, Liu C et al (2021) In vitro reconstitution of yeast translation system capable of synthesizing long polypeptide and recapitulating programmed ribosome stalling. Method Protoc 4:45

    Article  CAS  Google Scholar 

  15. Spremulli LL (2007) Large-scale isolation of mitochondrial ribosomes from mammalian tissues. Methods Mol Biol 372:265–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all the laboratory members who were involved in this project. This work was supported in part by grants to N.T. from MEXT/JSPS Grant-in-Aid for Scientific Research (18K06054), The Naito Foundation, The Hamaguchi Foundation for the Advancement of Biochemistry, The Koyanagi Foundation, and The TERUMO LIFE SCIENCE FOUNDATION.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nono Takeuchi-Tomita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, M., Takeuchi-Tomita, N. (2023). Reconstitution of Mammalian Mitochondrial Translation System Capable of Long Polypeptide Synthesis. In: Barrientos, A., Fontanesi, F. (eds) The Mitoribosome. Methods in Molecular Biology, vol 2661. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3171-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3171-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3170-6

  • Online ISBN: 978-1-0716-3171-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics