Skip to main content

Methods to Study the Biogenesis of Mitoribosomal Proteins in Yeast

  • Protocol
  • First Online:
The Mitoribosome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2661))

Abstract

The biogenesis of mitoribosomes is an intricate process that relies on the coordinated synthesis of nuclear-encoded mitoribosomal proteins (MRPs) in the cytosol, their translocation across mitochondrial membranes, the transcription of rRNA molecules in the matrix as well as the assembly of the roughly 80 different constituents of the mitoribosome. Numerous chaperones, translocases, processing peptidases, and assembly factors of the cytosol and in mitochondria support this complex reaction. The budding yeast Saccharomyces cerevisiae served as a powerful model organism to unravel the different steps by which MRPs are imported into mitochondria, fold into their native structures, and assemble into functional ribosomes.

In this chapter, we provide established protocols to study these different processes experimentally. In particular, we describe methods to purify mitochondria from yeast cells, to import radiolabeled MRPs into isolated mitochondria, and to elucidate the assembly reaction of MRPs by immunoprecipitation. These protocols and the list of dos and don’ts will enable beginners and experienced scientists to study the import and assembly of MRPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daum G, Böhni PC, Schatz G (1982) Import of proteins into mitochondria: cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem 257:13028–13033

    Article  CAS  PubMed  Google Scholar 

  2. Rout S, Oeljeklaus S, Makki A et al (2021) Determinism and contingencies shaped the evolution of mitochondrial protein import. Proc Natl Acad Sci U S A 118. https://doi.org/10.1073/pnas.2017774118

  3. Murcha MW, Wang Y, Narsai R et al (2014) The plant mitochondrial protein import apparatus – the differences make it interesting. Biochim Biophys Acta 1840:1233–1245. https://doi.org/10.1016/j.bbagen.2013.09.026

    Article  CAS  PubMed  Google Scholar 

  4. Hewitt V, Alcock F, Lithgow T (2011) Minor modifications and major adaptations: the evolution of molecular machines driving mitochondrial protein import. Biochim Biophys Acta 1808:947–954. https://doi.org/10.1016/j.bbamem.2010.07.019

    Article  CAS  PubMed  Google Scholar 

  5. Callegari S, Cruz-Zaragoza LD, Rehling P (2020) From TOM to the TIM23 complex – handing over of a precursor. Biol Chem 401:709–721. https://doi.org/10.1515/hsz-2020-0101

    Article  CAS  PubMed  Google Scholar 

  6. Finger Y, Riemer J (2020) Protein import by the mitochondrial disulfide relay in higher eukaryotes. Biol Chem 401:749–763. https://doi.org/10.1515/hsz-2020-0108

    Article  CAS  PubMed  Google Scholar 

  7. Imachi H, Nobu MK, Nakahara N et al (2020) Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577:519–525. https://doi.org/10.1038/s41586-019-1916-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ku C, Nelson-Sathi S, Roettger M et al (2015) Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524:427–432. https://doi.org/10.1038/nature14963

    Article  CAS  PubMed  Google Scholar 

  9. Burger G, Gray MW, Forget L et al (2013) Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol Evol 5:418–438. https://doi.org/10.1093/gbe/evt008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lang BF, Burger G, O’Kelly CJ et al (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497

    Article  CAS  PubMed  Google Scholar 

  11. Ott M, Amunts A, Brown A (2016) Organization and regulation of mitochondrial protein synthesis. Annu Rev Biochem. https://doi.org/10.1146/annurev-biochem-060815-014334

  12. Smits P, Smeitink JA, van den Heuvel LP et al (2007) Reconstructing the evolution of the mitochondrial ribosomal proteome. Nucleic Acids Res 35:4686–4703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Desmond E, Brochier-Armanet C, Forterre P et al (2011) On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Res Microbiol 162:53–70. https://doi.org/10.1016/j.resmic.2010.10.004

    Article  CAS  PubMed  Google Scholar 

  14. van der Sluis EO, Bauerschmitt H, Becker T et al (2015) Parallel structural evolution of mitochondrial ribosomes and OXPHOS complexes. Genome Biol Evol 7:1235–1251. https://doi.org/10.1093/gbe/evv061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tobiasson V, Amunts A (2020) Ciliate mitoribosome illuminates evolutionary steps of mitochondrial translation. elife 9. https://doi.org/10.7554/eLife.59264

  16. Petrov AS, Wood EC, Bernier CR et al (2019) Structural patching fosters divergence of mitochondrial ribosomes. Mol Biol Evol 36:207–219. https://doi.org/10.1093/molbev/msy221

    Article  CAS  PubMed  Google Scholar 

  17. Amunts A, Brown A, Toots J et al (2015) Ribosome. The structure of the human mitochondrial ribosome. Science 348:95–98. https://doi.org/10.1126/science.aaa1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beckmann R, Herrmann JM (2015) Structural biology. Mitoribosome oddities. Science 348:288–289. https://doi.org/10.1126/science.aab1054

    Article  CAS  PubMed  Google Scholar 

  19. Desai N, Brown A, Amunts A et al (2017) The structure of the yeast mitochondrial ribosome. Science 355:528–531. https://doi.org/10.1126/science.aal2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Englmeier R, Pfeffer S, Forster F (2017) Structure of the human mitochondrial ribosome studied in situ by cryoelectron tomography. Structure 25:1574–1581 e1572. https://doi.org/10.1016/j.str.2017.07.011

    Article  CAS  PubMed  Google Scholar 

  21. Greber BJ, Ban N (2016) Structure and function of the mitochondrial ribosome. Annu Rev Biochem. https://doi.org/10.1146/annurev-biochem-060815-014343

  22. Itoh Y, Andrell J, Choi A et al (2021) Mechanism of membrane-tethered mitochondrial protein synthesis. Science 371:846–849. https://doi.org/10.1126/science.abe0763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Waltz F, Soufari H, Bochler A et al (2020) Cryo-EM structure of the RNA-rich plant mitochondrial ribosome. Nat Plants 6:377–383. https://doi.org/10.1038/s41477-020-0631-5

    Article  PubMed  Google Scholar 

  24. Ramrath DJF, Niemann M, Leibundgut M et al (2018) Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science 362. https://doi.org/10.1126/science.aau7735

  25. Zeng R, Smith E, Barrientos A (2018) Yeast mitoribosome large subunit assembly proceeds by hierarchical incorporation of protein clusters and modules on the inner membrane. Cell Metab 27:645–656 e647. https://doi.org/10.1016/j.cmet.2018.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tu YT, Barrientos A (2015) The human mitochondrial DEAD-box protein DDX28 resides in RNA granules and functions in mitoribosome assembly. Cell Rep. https://doi.org/10.1016/j.celrep.2015.01.033

  27. Maiti P, Lavdovskaia E, Barrientos A et al (2021) Role of GTPases in driving mitoribosome assembly. Trends Cell Biol 31:284–297. https://doi.org/10.1016/j.tcb.2020.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. De Silva D, Tu YT, Amunts A et al (2015) Mitochondrial ribosome assembly in health and disease. Cell Cycle 14:2226–2250. https://doi.org/10.1080/15384101.2015.1053672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh AP, Salvatori R, Aftab W et al (2020) Molecular connectivity of mitochondrial gene expression and OXPHOS biogenesis. Mol Cell 79:1051–1065 e1010. https://doi.org/10.1016/j.molcel.2020.07.024

    Article  CAS  PubMed  Google Scholar 

  30. Münch C, Harper JW (2016) Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation. Nature 534:710–713. https://doi.org/10.1038/nature18302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mick DU, Dennerlein S, Wiese H et al (2012) MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell 151:1528–1541. https://doi.org/10.1016/j.cell.2012.11.053

    Article  CAS  PubMed  Google Scholar 

  32. Richter-Dennerlein R, Oeljeklaus S, Lorenzi I et al (2016) Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein. Cell 167:471–483 e410. https://doi.org/10.1016/j.cell.2016.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suhm T, Kaimal JM, Dawitz H et al (2018) Mitochondrial translation efficiency controls cytoplasmic protein homeostasis. Cell Metab 27:1309–1322 e1306. https://doi.org/10.1016/j.cmet.2018.04.011

    Article  CAS  PubMed  Google Scholar 

  34. Sanchirico M, Tzellas A, Fox TD et al (1995) Relocation of the unusual VAR1 gene from the mitochondrion to the nucleus. Biochem Cell Biol 73:987–995

    Article  CAS  PubMed  Google Scholar 

  35. Seshadri SR, Banarjee C, Barros MH et al (2020) The translational activator Sov1 coordinates mitochondrial gene expression with mitoribosome biogenesis. Nucleic Acids Res 48:6759–6774. https://doi.org/10.1093/nar/gkaa424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chacinska A, Koehler CM, Milenkovic D et al (2009) Importing mitochondrial proteins: machineries and mechanisms. Cell 138:628–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wiedemann N, Pfanner N (2017) Mitochondrial machineries for protein import and assembly. Annu Rev Biochem 86:685–714. https://doi.org/10.1146/annurev-biochem-060815-014352

    Article  CAS  PubMed  Google Scholar 

  38. Endo T, Yamano K (2009) Multiple pathways for mitochondrial protein traffic. Biol Chem 390:723–730

    Article  CAS  PubMed  Google Scholar 

  39. Gupta A, Becker T (2021) Mechanisms and pathways of mitochondrial outer membrane protein biogenesis. Biochim Biophys Acta Bioenerg 1862:148323. https://doi.org/10.1016/j.bbabio.2020.148323

    Article  CAS  PubMed  Google Scholar 

  40. Mokranjac D (2020) How to get to the other side of the mitochondrial inner membrane - the protein import motor. Biol Chem 401:723–736. https://doi.org/10.1515/hsz-2020-0106

    Article  CAS  PubMed  Google Scholar 

  41. Woellhaf MW, Hansen KG, Garth C et al (2014) Import of ribosomal proteins into yeast mitochondria. Biochem Cell Biol:1–10. https://doi.org/10.1139/bcb-2014-0029

  42. Bykov YS, Flohr T, Boos F et al (2021) Widespread use of unconventional targeting signals in mitochondrial ribosome proteins. EMBO J:e109519. https://doi.org/10.15252/embj.2021109519

  43. Longen S, Woellhaf MW, Petrungaro C et al (2014) The disulfide relay of the intermembrane space oxidizes the ribosomal subunit mrp10 on its transit into the mitochondrial matrix. Dev Cell 28:30–42. https://doi.org/10.1016/j.devcel.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  44. Nolden M, Ehses S, Koppen M et al (2005) The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 123:277–289

    Article  CAS  PubMed  Google Scholar 

  45. Bonn F, Tatsuta T, Petrungaro C et al (2011) Presequence-dependent folding ensures MrpL32 processing by the m-AAA protease in mitochondria. EMBO J 30:2545–2556. https://doi.org/10.1038/emboj.2011.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630

    Article  CAS  PubMed  Google Scholar 

  47. Sikorski RS, Hieter P (1989) A system of shuttle vectors and host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brachmann CB, Davies A, Cost GJ et al (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  CAS  PubMed  Google Scholar 

  49. Mokranjac D, Neupert W (2007) Protein import into isolated mitochondria. In: Leister D, Herrmann JM (eds) Mitochondria. Practical protocols, vol 372. Humana Press, Totowa, pp 277–286

    Google Scholar 

  50. Meisinger C, Sommer T, Pfanner N (2000) Purification of Saccharomcyes cerevisiae mitochondria devoid of microsomal and cytosolic contaminations. Anal Biochem 287:339–342. https://doi.org/10.1006/abio.2000.4868

    Article  CAS  PubMed  Google Scholar 

  51. Sickmann A, Reinders J, Wagner Y et al (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100:13207–13212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  53. Pelham HRB, Jackson RJ (1976) An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem 67:247–256

    Article  CAS  PubMed  Google Scholar 

  54. Couvillion MT, Soto IC, Shipkovenska G et al (2016) Synchronized mitochondrial and cytosolic translation programs. Nature 533:499–503. https://doi.org/10.1038/nature18015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dubreuil B, Sass E, Nadav Y et al (2019) YeastRGB: comparing the abundance and localization of yeast proteins across cells and libraries. Nucleic Acids Res 47:D1245–D1249. https://doi.org/10.1093/nar/gky941

    Article  PubMed  Google Scholar 

  56. Braun MB, Traenkle B, Koch PA et al (2016) Peptides in headlock--a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy. Sci Rep 6:19211. https://doi.org/10.1038/srep19211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kehrein K, Schilling R, Moller-Hergt BV et al (2015) Organization of mitochondrial gene expression in two distinct ribosome-containing assemblies. Cell Rep 10:843–853. https://doi.org/10.1016/j.celrep.2015.01.012

    Article  CAS  PubMed  Google Scholar 

  58. Vestweber D, Schatz G (1988) Point mutations destabilizing a precursor protein enhance its post-translational import into mitochondria. EMBO J 7:1147–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hines V, Schatz G (1993) Precursor binding to yeast mitochondria. A general role for the outer membrane protein Mas70p. J Biol Chem 268:449–454

    Article  CAS  PubMed  Google Scholar 

  60. Backes S, Hess S, Boos F et al (2018) Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J Cell Biol 217:1369–1382. https://doi.org/10.1083/jcb.201708044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morgenstern M, Stiller SB, Lubbert P et al (2017) Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep 19:2836–2852. https://doi.org/10.1016/j.celrep.2017.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zöller E, Laborenz J, Kramer L et al (2020) The intermembrane space protein Mix23 is a novel stress-induced mitochondrial import factor. J Biol Chem 295:14686–14697. https://doi.org/10.1074/jbc.RA120.014247

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Markus Räschle and Lavanya Deenadayalu for help in the context of the experimental data shown in Figs. 2 and 3. The authors were supported by grants of the Deutsche Forschungsgemeinschaft (HE2803/9-2) and the Forschungsinitiative Rheinland-Pfalz BioComp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes M. Herrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bertgen, L., Flohr, T., Herrmann, J.M. (2023). Methods to Study the Biogenesis of Mitoribosomal Proteins in Yeast. In: Barrientos, A., Fontanesi, F. (eds) The Mitoribosome. Methods in Molecular Biology, vol 2661. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3171-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3171-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3170-6

  • Online ISBN: 978-1-0716-3171-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics