Skip to main content

Measuring the Co-Localization and Dynamics of Mobile Proteins in Live Cells Undergoing Signaling Responses

  • Protocol
  • First Online:
The Immune Synapse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2654))

Abstract

Single molecule imaging in live cells enables the study of protein interactions and dynamics as they participate in signaling processes. When combined with fluorophores that stochastically transition between fluorescent and reversible dark states, as in super-resolution localization imaging, labeled molecules can be visualized in single cells over time. This improvement in sampling enables the study of extended cellular responses at the resolution of single molecule localization. This chapter provides optimized experimental and analytical methods used to quantify protein interactions and dynamics within the membranes of adhered live cells. Importantly, the use of pair-correlation functions resolved in both space and time allows researchers to probe interactions between proteins on biologically relevant distance and timescales, even though fluorescence localization methods typically require long times to assemble well-sampled reconstructed images. We describe an application of this approach to measure protein interactions in B cell receptor signaling and include sample analysis code for post-processing of imaging data. These methods are quantitative, sensitive, and broadly applicable to a range of signaling systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murugesan S, Hong J, Yi J, Li D, Beach JR, Shao L, Meinhardt J, Madison G, Wu X, Betzig E, Hammer JA (2016) Formin-generated actomyosin arcs propel T cell receptor microcluster movement at the immune synapse. J Cell Biol 215:383–399. https://doi.org/10.1083/jcb.201603080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fritzsche M, Fernandes RA, Chang VT, Colin-York H, Clausen MP, Felce JH, Galiani S, Erlenkämper C, Santos AM, Heddleston JM, Pedroza-Pacheco I, Waithe D, de la Serna JB, Lagerholm BC, Liu T, Chew T-L, Betzig E, Davis SJ, Eggeling C (2017) Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation. Sci Adv 3:e1603032. https://doi.org/10.1126/sciadv.1603032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jung Y, Riven I, Feigelson SW, Kartvelishvily E, Tohya K, Miyasaka M, Alon R, Haran G (2016) Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proc Natl Acad Sci 113:E5916–E5924. https://doi.org/10.1073/pnas.1605399113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mace EM, Orange JS (2016) High- and super-resolution microscopy imaging of the NK cell immunological synapse. Methods Mol Biol 1441:141–150. https://doi.org/10.1007/978-1-4939-3684-7_12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sherman E, Barr V, Samelson LE (2013) Super-resolution characterization of TCR-dependent signaling clusters. Immunol Rev 251:21–35. https://doi.org/10.1111/imr.12010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shannon MJ, Burn G, Cope A, Cornish G, Owen DM (2015) Protein clustering and spatial organization in T-cells. Biochem Soc Trans 43:315–321. https://doi.org/10.1042/BST20140316

    Article  CAS  PubMed  Google Scholar 

  7. Freeman SA, Goyette J, Furuya W, Woods EC, Bertozzi CR, Bergmeier W, Hinz B, van der Merwe PA, Das R, Grinstein S (2016) Integrins form an expanding diffusional barrier that coordinates phagocytosis. Cell 164:128–140. https://doi.org/10.1016/j.cell.2015.11.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rust MJ, Bates M, Zhuang X (2006) Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution. Nat Methods 3:793–795. https://doi.org/10.1038/nmeth929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645. https://doi.org/10.1126/science.1127344

    Article  PubMed  Google Scholar 

  10. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272. https://doi.org/10.1529/biophysj.106.091116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47:6172–6176. https://doi.org/10.1002/anie.200802376

    Article  CAS  Google Scholar 

  12. Maity PC, Blount A, Jumaa H, Ronneberger O, Lillemeier BF, Reth M (2015) B cell antigen receptors of the IgM and IgD classes are clustered in different protein islands that are altered during B cell activation. Sci Signal 8:ra93. https://doi.org/10.1126/scisignal.2005887

    Article  CAS  PubMed  Google Scholar 

  13. Mattila PK, Feest C, Depoil D, Treanor B, Montaner B, Otipoby KL, Carter R, Justement LB, Bruckbauer A, Batista FD (2013) The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity 38:461–474. https://doi.org/10.1016/j.immuni.2012.11.019

    Article  CAS  PubMed  Google Scholar 

  14. Schwartz SL, Cleyrat C, Olah MJ, Relich PK, Phillips GK, Hlavacek WS, Lidke KA, Wilson BS, Lidke DS (2017) Differential mast cell outcomes are sensitive to FcεRI-Syk binding kinetics. Mol Biol Cell 28:3397–3414. https://doi.org/10.1091/mbc.e17-06-0350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shelby SA, Holowka D, Baird B, Veatch SL (2013) Distinct stages of stimulated FcεRI receptor clustering and immobilization are identified through superresolution imaging. Biophys J 105:2343–2354. https://doi.org/10.1016/j.bpj.2013.09.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sherman E, Barr V, Manley S, Patterson G, Balagopalan L, Akpan I, Regan CK, Merrill RK, Sommers CL, Lippincott-Schwartz J, Samelson LE (2011) Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 35:705–720. https://doi.org/10.1016/j.immuni.2011.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rossy J, Owen DM, Williamson DJ, Yang Z, Gaus K (2013) Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nat Immunol 14:82–89. https://doi.org/10.1038/ni.2488

    Article  CAS  PubMed  Google Scholar 

  18. Hsu C-J, Baumgart T (2011) Spatial association of signaling proteins and F-actin effects on cluster assembly analyzed via photoactivation localization microscopy in T cells. PLoS One 6:e23586. https://doi.org/10.1371/journal.pone.0023586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kennedy PR, Barthen C, Williamson DJ, Pitkeathly WTE, Hazime KS, Cumming J, Stacey KB, Hilton HG, Carrington M, Parham P, Davis DM (2019) Genetic diversity affects the nanoscale membrane organization and signaling of natural killer cell receptors. Sci Signal 12:eaaw9252. https://doi.org/10.1126/scisignal.aaw9252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith LK, Fawaz K, Treanor B (2021) Galectin-9 regulates the threshold of B cell activation and autoimmunity. elife 10:e64557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lopes FB, Bálint Š, Valvo S, Felce JH, Hessel EM, Dustin ML, Davis DM (2017) Membrane nanoclusters of FcγRI segregate from inhibitory SIRPα upon activation of human macrophages. J Cell Biol 216:1123–1141. https://doi.org/10.1083/jcb.201608094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stone MB, Shelby SA, Núñez MF, Wisser K, Veatch SL (2017) Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes. eLife 6:e19891. https://doi.org/10.7554/eLife.19891

    Article  PubMed  PubMed Central  Google Scholar 

  23. Núñez MF, Wisser K, Veatch SL (2020) Synergistic factors control kinase-phosphatase organization in B-cells engaged with supported bilayers. Mol Biol Cell 31:667–682. https://doi.org/10.1091/mbc.E19-09-0507

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shelby SA, Castello-Serrano I, Wisser KC, Levental I, Veatch SL (2023) Membrane phase separation drives responsive assembly of receptor signaling domains. Nat. Chem. Biol. in press. https://doi.org/10.1038/s41589-023-01268-8

  25. Hirvonen LM, Marsh RJ, Jones GE, Cox S (2020) Combined AFM and super-resolution localisation microscopy: investigating the structure and dynamics of podosomes. Eur J Cell Biol 99:151106. https://doi.org/10.1016/j.ejcb.2020.151106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Deschout H, Lukes T, Sharipov A, Szlag D, Feletti L, Vandenberg W, Dedecker P, Hofkens J, Leutenegger M, Lasser T, Radenovic A (2016) Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions. Nat Commun 7:13693. https://doi.org/10.1038/ncomms13693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang F, Hartwich TMP, Rivera-Molina FE, Lin Y, Duim WC, Long JJ, Uchil PD, Myers JR, Baird MA, Mothes W, Davidson MW, Toomre D, Bewersdorf J (2013) Video-rate nanoscopy using sCMOS camera–specific single-molecule localization algorithms. Nat Methods 10:653–658. https://doi.org/10.1038/nmeth.2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Veatch SL, Machta BB, Shelby SA, Chiang EN, Holowka DA, Baird BA (2012) Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting. PLoS One 7:e31457. https://doi.org/10.1371/journal.pone.0031457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sengupta P, Jovanovic-Talisman T, Skoko D, Renz M, Veatch SL, Lippincott-Schwartz J (2011) Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat Methods 8:969–975. https://doi.org/10.1038/nmeth.1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schnitzbauer J, Wang Y, Zhao S, Bakalar M, Nuwal T, Chen B, Huang B (2018) Correlation analysis framework for localization-based superresolution microscopy. Proc Natl Acad Sci 115:3219–3224. https://doi.org/10.1073/pnas.1711314115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stone MB, Veatch SL (2015) Steady-state cross-correlations for live two-colour super-resolution localization data sets. Nat Commun 6:7347. https://doi.org/10.1038/ncomms8347

    Article  CAS  PubMed  Google Scholar 

  32. Sherman E, Barr VA, Merrill RK, Regan CK, Sommers CL, Samelson LE (2016) Hierarchical nanostructure and synergy of multimolecular signalling complexes. Nat Commun 7:12161. https://doi.org/10.1038/ncomms12161

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stone MB, Shelby SA, Veatch SL (2017) Super-resolution microscopy: shedding light on the cellular plasma membrane. Chem Rev 117:7457–7477. https://doi.org/10.1021/acs.chemrev.6b00716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shaw TR, Fazekas FJ, Kim S, Flanagan-Natoli JC, Sumrall ER, Veatch SL (2022) Estimating the localization spread function of static single-molecule localization microscopy images. Biophys J 121:2906–2920. https://doi.org/10.1016/j.bpj.2022.06.036

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Schnitzbauer J, Hu Z, Li X, Cheng Y, Huang Z-L, Huang B (2014) Localization events-based sample drift correction for localization microscopy with redundant cross-correlation algorithm. Opt Express 22:15982–15991. https://doi.org/10.1364/OE.22.015982

    Article  PubMed  PubMed Central  Google Scholar 

  36. Haughton G, Arnold LW, Bishop GA, Mercolino TJ (1986) The CH series of murine B cell lymphomas: neoplastic analogues of Ly-1+ normal B cells. Immunol Rev 93:35–52. https://doi.org/10.1111/j.1600-065X.1986.tb01501.x

    Article  CAS  PubMed  Google Scholar 

  37. Zhang M, Chang H, Zhang Y, Yu J, Wu L, Ji W, Chen J, Liu B, Lu J, Liu Y, Zhang J, Xu P, Xu T (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9:727–729. https://doi.org/10.1038/nmeth.2021

    Article  CAS  PubMed  Google Scholar 

  38. Ovesný M, Křížek P, Borkovec J, Švindrych Z, Hagen GM (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389–2390. https://doi.org/10.1093/bioinformatics/btu202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Curtis AS (1964) The mechanism of adhesion of cells to glass. A study by interference reflection microscopy. J Cell Biol 20:199–215. https://doi.org/10.1083/jcb.20.2.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Churchman LS, Ökten Z, Rock RS, Dawson JF, Spudich JA (2005) Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc Natl Acad Sci 102:1419–1423. https://doi.org/10.1073/pnas.0409487102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fazekas FJ, Shaw TR, Kim S, Bogucki RA, Veatch SL (2021) A mean shift algorithm for drift correction in localization microscopy. Biophys Rep 1:100008. https://doi.org/10.1016/j.bpr.2021.100008

    Article  CAS  Google Scholar 

  42. Baddeley A, Rubak E, Turner R (2016) Spatial point patterns: methodology and applications with R. CRC Press, Boca Raton/London/New York

    Google Scholar 

  43. Shaw T, Moller J, Waagepetersen RP (2021) Globally intensity-reweighted estimators for K- and pair correlation functions. Aust N Z J Stat 63:93–118. https://doi.org/10.1111/anzs.12318

    Article  Google Scholar 

  44. Helmerich DA, Beliu G, Taban D, Meub M, Streit M, Kuhlemann A, Doose S, Sauer M (2022) Photoswitching fingerprint analysis bypasses the 10-nm resolution barrier. Nat Methods 19:986–994. https://doi.org/10.1038/s41592-022-01548-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berglund AJ (2010) Statistics of camera-based single-particle tracking. Phys Rev E 82:011917. https://doi.org/10.1103/PhysRevE.82.011917

    Article  CAS  Google Scholar 

  46. Stone MB, Veatch SL (2014) Far-red organic fluorophores contain a fluorescent impurity. ChemPhysChem 15:2240–2246. https://doi.org/10.1002/cphc.201402002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Matikonda SS, Helmerich DA, Meub M, Beliu G, Kollmannsberger P, Greer A, Sauer M, Schnermann MJ (2021) Defining the basis of cyanine phototruncation enables a new approach to single-molecule localization microscopy. ACS Cent Sci 7:1144–1155. https://doi.org/10.1021/acscentsci.1c00483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lukinavičius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Corrêa IR, Luo Z-G, Schultz C, Lemke EA, Heppenstall P, Eggeling C, Manley S, Johnsson K (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5:132–139. https://doi.org/10.1038/nchem.1546

    Article  CAS  PubMed  Google Scholar 

  49. Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7:373–375. https://doi.org/10.1038/nmeth.1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Andrea Stoddard and Kathleen Wisser for contributing reagents and help with sample preparation. Jennifer Flanagan-Natoli developed protocols to functionalize coverglass for cell adhesion. Matthew Stone helped develop data analysis, sample preparation, and imaging methods. This work was funded by NIH (GM110052, GM134949, CA226962) and NSF (MCB1552439) grants to SLV. SAS was supported by an American Cancer Society postdoctoral fellowship grant (PF1800401CCE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Veatch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shelby, S.A., Shaw, T.R., Veatch, S.L. (2023). Measuring the Co-Localization and Dynamics of Mobile Proteins in Live Cells Undergoing Signaling Responses. In: Baldari, C.T., Dustin, M.L. (eds) The Immune Synapse. Methods in Molecular Biology, vol 2654. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3135-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3135-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3134-8

  • Online ISBN: 978-1-0716-3135-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics