Skip to main content

Stepwise Optimization of Real-Time RT-PCR Analysis

  • Protocol
  • First Online:
Plant Genome Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2653))

Abstract

Quantitative real-time reverse transcription PCR (qRT-PCR) analysis has been used routinely to quantify gene expression levels. Primer design and the optimization of qRT-PCR parameters are critical for the accuracy and reproducibility of qRT-PCR analysis. Computational tool-assisted primer design often overlooks the presence of homologous sequences of the gene of interest and the sequence similarities between homologous genes in a plant genome. This sometimes results in skipping the optimization of qRT-PCR parameters due to the false confidence in the quality of the designed primers. Here we present a stepwise optimization protocol for single nucleotide polymorphisms (SNPs)-based sequence-specific primer design and sequential optimization of primer sequences, annealing temperatures, primer concentrations, and cDNA concentration range for each reference and target gene. The goal of this optimization protocol is to achieve a standard cDNA concentration curve with an R2 ≥ 0.9999 and efficiency (E) = 100 ± 5% for the best primer pair of each gene, which serves as the prerequisite for using the 2−ΔΔCT method for data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  2. Bolha L, Dušanić D, Narat M, Oven I (2012) Comparison of methods for relative quantification of gene expression using real-time PCR. Acta Agric Slov 100:97

    Article  CAS  Google Scholar 

  3. Guénin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions specific, validation of references. J Exp Bot 60:487–493

    Article  PubMed  Google Scholar 

  4. Thornton B, Basu C (2015) Rapid and simple method of qPCR primer design. In: Basu C (ed) PCR primer design. Methods in molecular biology, vol 1275. Humana Press, New York, pp 173–179. https://doi.org/10.1007/978-1-4939-2365-6_13

    Chapter  Google Scholar 

  5. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acid Res 35:W71–W74

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fredslund J, Lange M (2007) Primique: automatic design of specific PCR primers for each sequence in a family. BMC Bioinf 8:369–375

    Article  Google Scholar 

  7. You FM, Huo N, Gu YQ, Luo MC, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinf 9:253

    Article  Google Scholar 

  8. Arvidsson S, Kwasniewski M, Riaño-Pachón DM, Mueller-Roeber B (2008) QuantPrime-a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinf 9:465

    Article  Google Scholar 

  9. Spandidos A, Wang X, Wang H, Seed B (2010) PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Res 38:D792–D799

    Article  CAS  PubMed  Google Scholar 

  10. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinf 13:134

    Article  CAS  Google Scholar 

  11. Kim H, Kang N, An K, Koo J, Kim MS (2016) MRPrimerW: a tool for rapid design of valid high-quality primers for multiple target qPCR experiments. Nucleic Acids Res 44:W259–W266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hendling M, Pabinger S, Peters K, Wolff N, Conzemius R, Barišic I (2018) Oli2go: an automated multiplex oligonucleotide design tool. Nucleic Acids Res 46:W252–W256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu K, Li T, He K, Chang W, Zhang R, Liu R et al (2018) qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucleic Acids Res 46:D1229–D1236

    Article  CAS  PubMed  Google Scholar 

  14. Jeon H, Bae J, Hwang SH, Whang KY, Lee HS, Kim H, Kim MS (2019) MRPrimerW2: an enhanced tool for rapid design of valid high-quality primers with multiple search modes for qPCR experiments. Nucleic Acids Res 47:W614–W622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  16. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pfaffl MW, Georgieva TM, Georgiev IP, Ontsouka E, Hageleit M, Blum JW (2002) Real-time RT-PCR quantification of insulin-like growth factor (IGF)-1, IGF-1 receptor, IGF-2, IGF-2 receptor, insulin receptor, growth hormone receptor, IGF-binding proteins 1, 2 and 3 in the bovine species. Domest Anim Endocrinol 22:91–102

    Article  CAS  PubMed  Google Scholar 

  19. Tellmann G (2006) The E-Method: a highly accurate technique for gene-expression analysis. Nat Methods 3:1–2

    Article  Google Scholar 

  20. Alonso-Rebollo A, Ramos-Gomez S, Busto MD, Ortega N (2017) Development and optimization of an efficient qPCR system for olive authentication in edible oils. Food Chem 232:827–835

    Article  CAS  PubMed  Google Scholar 

  21. Chen X, Mao Y, Huang S, Ni J, Lu W, Huo J et al (2017) Selection of suitable reference genes for quantitative real-time PCR in Sapium sebiferum. Front Plant Sci 8:637

    Article  PubMed  PubMed Central  Google Scholar 

  22. Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    Article  CAS  PubMed  Google Scholar 

  24. Jin Y, Liu F, Huang W, Sun Q, Huang X (2019) Identification of reliable reference genes for qRT-PCR in the ephemeral plant Arabidopsis pumila based on full-length transcriptome data. Sci Rep 9:8408

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sang J, Wang Z, Li M, Cao J, Niu G, Xia L et al (2018) ICG: a wiki-driven knowledgebase of internal control genes for RT-qPCR normalization. Nucleic Acids Res 46:D121–D126

    Article  CAS  PubMed  Google Scholar 

  26. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  27. Granados JM, Ávila C, Cánovas FM, Cañas RA (2016) Selection and testing of reference genes for accurate RT-qPCR in adult needles and seedlings of maritime pine. Tree Genet Genomes 12:1–15

    Article  Google Scholar 

  28. Cheng Y, Bian W, Pang X, Yu J, Ahammed GJ, Zhou G et al (2016) Genome-wide identification and evaluation of reference genes for quantitative RT-PCR analysis during tomato fruit development. Front Plant Sci 8:1440

    Article  Google Scholar 

  29. Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84

    Article  CAS  Google Scholar 

  30. Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33

    Article  PubMed  PubMed Central  Google Scholar 

  31. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  32. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  33. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–0034.11

    Article  Google Scholar 

  34. Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21:1859–1875

    Article  CAS  PubMed  Google Scholar 

  35. Zhao F, Maren NA, Kosentka PZ, Liao YY, Lu H, Duduit JR et al (2021) An optimized protocol for stepwise optimization of real-time RT-PCR analysis. Hort Res 8:179

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the USDA National Institute of Food and Agriculture Hatch project 02685 and North Carolina State University for the startup funds to the Liu laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wusheng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maren, N.A., Duduit, J.R., Huang, D., Zhao, F., Ranney, T.G., Liu, W. (2023). Stepwise Optimization of Real-Time RT-PCR Analysis. In: Yang, B., Harwood, W., Que, Q. (eds) Plant Genome Engineering. Methods in Molecular Biology, vol 2653. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3131-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3131-7_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3130-0

  • Online ISBN: 978-1-0716-3131-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics