Skip to main content

Chiroptical Properties of Z-DNA Using Ionic Porphyrins and Metalloporphyrins

  • Protocol
  • First Online:
Z-DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2651))

  • 688 Accesses

Abstract

The non-covalent interaction of achiral porphyrins with nucleic acids has been extensively studied, and various macrocycles have been indeed utilized as reporters of different sequences of DNA bases. Nevertheless, few studies have been published on the capability of these macrocycles to discriminate among the various nucleic acid conformations. Circular dichroism spectroscopy allowed to characterize the binding of several cationic and anionic mesoporphyrins and metallo derivatives with Z–DNA, in order to exploit the functionality of these systems as probes, storing system, and logic gate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belmont P, Constant JF, Demeunyck M (2001) Nucleic acid conformation diversity: from structure to function and regulation. Chem Soc Rev 30:70–81

    Article  CAS  Google Scholar 

  2. Jovin TM, Soumpasis DM, McIntosh LP (1987) The transition between B-DNA and Z-DNA. Annu Rev Phys Chem 38:521–558

    Article  CAS  Google Scholar 

  3. Rich A, Nordheim A, Wang AH (1984) The chemistry and biology of left-handed Z-DNA. Annu Rev Biochem 53:791–842

    Article  CAS  PubMed  Google Scholar 

  4. Rich A, Zhang S (2003) Timeline: Z-DNA: the long road to biological function. Nat Rev Genet 4:566–572

    Article  CAS  PubMed  Google Scholar 

  5. Herbert A, Alfken J, Kim Y--G, Mian IS, Nishikura K, Rich A (1997) A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc Natl Acad Sci U S A 94:8421–8426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim Y--G, Lowenhaupt K, Maas S, Herbert A, Schwartz T, Rich A (2000) The Zab domain of the human RNA editing enzyme ADAR1 recognizes Z-DNA when surrounded by B-DNA. J Biol Chem 275:26828–26833

    Article  CAS  PubMed  Google Scholar 

  7. Kim Y--G, Lowenhaupt K, Oh D--B, Kim KK, Rich A (2004) Evidence that vaccinia virulence factor E3L binds to Z-DNA in vivo: implications for development of a therapy for poxvirus infection. Proc Natl Acad Sci U S A 101:1514–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwartz T, Rould MA, Lowenhaupt K, Herbert A, Rich A (1999) Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284:1841–1845

    Article  CAS  PubMed  Google Scholar 

  9. Berova N, Nakanishi K, Woody RW (2000) Circular dichroism principles and application. Wiley-VCH, New York

    Google Scholar 

  10. Kypr J, Kejnovská I, Renčiuk D, Vorlíčková M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37:1713–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mammana A, De Napoli M, Lauceri R, Purrello R (2005) Induction and memory of chirality in porphyrin hetero-aggregates: the role of the central metal ion. Bioorg Med Chem 13:5159–5163

    Article  CAS  PubMed  Google Scholar 

  12. Pasternack RF, Francesconi L, Raff D, Spiro E (1973) Aggregation of nickel(II), copper(II), and zinc(II) derivatives of water-soluble porphyrins. Inorg Chem 12:2606–2611

    Article  CAS  Google Scholar 

  13. Choi JK, D’Urso A, Balaz M (2013) Chiroptical properties of anionic and cationic porphyrins and metalloporphyrins in complex with left-handed Z-DNA and right-handed B-DNA. J Inorg Biochem 127:1–6

    Article  CAS  PubMed  Google Scholar 

  14. D’Urso A, Choi JK, Shabbir--Hussain M, Ngwa FN, Lambousis MI, Purrello R, Balaz M (2010) Recognition of left-handed Z-DNA of short unmodified oligonucleotides under physiological ionic strength conditions. Biochem Biophys Res Commun 397:329–332

    Article  PubMed  PubMed Central  Google Scholar 

  15. Parkinson A, Hawken M, Hall M, Sanders KJ, Rodger A (2000) Amine induced Z-DNA in poly(dG-dC)·poly(dG-dC): circular dichroism and gel electrophoresis study. Phys Chem Chem Phys 2:5469–5478

    Article  CAS  Google Scholar 

  16. Schoenknecht T, Diebler H (1993) Spectrophotometric and kinetic studies of the binding of Ni2+, Co2+, and Mg2+ to poly(dG-dC) · poly(dG-dC). Determination of the stoichiometry of the Ni2+-induced B → Z transition. J Inorg Biochem 50:283–298

    Article  CAS  PubMed  Google Scholar 

  17. Fuertes MA, Cepeda V, Alonso C, Perez JM (2006) Molecular mechanisms for the B-Z transition in the example of poly[d(G-C)d(G-C)] polymers. A critical review. Chem Rev 106:2045–2064

    Article  CAS  PubMed  Google Scholar 

  18. D’Urso A, Mammana A, Balaz M, Holmes AE, Berova N, Lauceri R, Purrello R (2009) Interactions of a Tetraanionic porphyrin with DNA: from a Z-DNA sensor to a versatile supramolecular device. J Am Chem Soc 131:2046–2047

    Article  PubMed  Google Scholar 

  19. (a) D’Urso A, Holmes AE, Berova N, Balaz M, Purrello R (2011) Z-DNA recognition in B-Z-B sequences by a cationic zinc porphyrin. Chem Asian J 6:3104–3109; (b) Ha SC, Lowenhaupt K, Rich A, Kim YG, Kim KK (2005) Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases. Nature 437:1183–1186

    Google Scholar 

  20. (a) Moller A, Nordheim A, Kozlowski SA, Patel DJ, Rich A (1984) Bromination stabilizes poly(dG-dC) in the Z-DNA form under low-salt conditions. Biochemistry 23:54–62; (b) Nadler A, Diederichsen U (2008) Guanosine analog with respect to Z-DNA stabilization: nucleotide with combined C8-Bromo and C2′-Ethynyl modifications. Eur J Org Chem 9:1544–1549; (c) Kimura T, Kawai K, Tojo S, Majima T (2004) One-electron attachment reaction of B- and Z-DNA modified by 8-Bromo-2′-deoxyguanosine. J Org Chem 69:1169–1173

    Google Scholar 

  21. Gangemi CMA, D’Urso A, Tomaselli GA, Berova N, Purrello R (2017) A novel porphyrin-based molecular probe ZnTCPPSpm4 with catalytic, stabilizing and chiroptical diagnostic power towards DNA B-Z transition. J Inorg Biochem 173:141–143

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro D’Urso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

D’Urso, A. (2023). Chiroptical Properties of Z-DNA Using Ionic Porphyrins and Metalloporphyrins. In: Kim, K.K., Subramani, V.K. (eds) Z-DNA. Methods in Molecular Biology, vol 2651. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3084-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3084-6_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3083-9

  • Online ISBN: 978-1-0716-3084-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics