Skip to main content

Methods for Culturing Anaerobic Microorganisms

  • Protocol
  • First Online:
Oxygen Sensing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2648))

Abstract

Anaerobic microorganisms (anaerobes) proliferate in diverse oxygen-free environments. They inhabit Earth’s soils and aquatic sediments, the rumen and gut of mammals, and the gut of insects among many other oxygen-free environments. Anaerobes impact biotechnological, biomedical, ecological, and astrobiological fields. Sensitivity to oxygen is of prime consideration for successful culturing which is essential to understand function. Although cultivated for many years, the protocols and media components have been modified and adapted to the special needs of species, as well as conditions and variables for experimental evaluations. Here we describe a revised method used in our laboratories for the growth of methane-producing anaerobes (methanogenic archaea) which are among the most oxygen sensitive. The method is an example for the preparation of more specific media to cultivate a wide diversity of anaerobes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292. https://doi.org/10.1111/j.1758-2229.2009.00038.x

    Article  CAS  PubMed  Google Scholar 

  2. Ferry JG (2011) Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass. Curr Opin Biotechnol 22:351–357. https://doi.org/10.1016/j.copbio.2011.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jasso-Chávez R, Lira-Silva E, González-Sánchez K, Larios Serrato V, Mendoza-Monzoy DL, Pérez-Villatoro et al (2019) Marine archaeon Methanosarcina acetivorans enhances polyphosphate metabolism under persistent cadmium stress. Front Microbiol 10:2432. https://doi.org/10.3389/fmicb.2019.02432

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ferry JG (2020) Methanosarcina acetivorans: a model for mechanistic understanding of aceticlastic and reverse methanogenesis. Front Microbiol 11:1806. https://doi.org/10.3389/fmicb.2020.01806

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aldridge J, Carr S, Weber KA, Buan NR (2021) Anaerobic production of isoprene by engineered Methanosarcina species archaea. Appl Environ Microbiol 87(6):e02417–e02420. https://doi.org/10.1128/AEM.02417-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borrel G, Brugère JF, Gribaldo S, Schmitz RA, Moissl-Eichinger C (2020) The host-associated archaeome. Nat Rev Microbiol 18(11):622–636. https://doi.org/10.1038/s41579-020-0407-y

    Article  CAS  PubMed  Google Scholar 

  7. Chibani CM, Mahnert A, Borrel G, Almeida A, Werner A, Brugère JF, Gribaldo S, Finn RD, Schmitz RA, Moissl-Eichinger C (2022) A catalogue of 1,167 genomes from the human gut archaeome. Nat Microbiol 7(1):48–61. https://doi.org/10.1038/s41564-021-01020-9

    Article  CAS  PubMed  Google Scholar 

  8. Probst A, Vaishampayan P, Osman S, Moissl-Eichinger C, Andersen GL, Venkateswaran K (2010) Diversity of anaerobic microbes in spacecraft assembly clean rooms. Appl Environ Microbiol 76(9):2837–2845. https://doi.org/10.1128/AEM.02167-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beblo-Vranesevic K, Bohmeier M, Schleumer S, Rabbow E, Perras AK, Moissl-Eichinger C, Schwendner P, Cockell CS, Vannier P, Marteinsson VT, Monaghan EP, Riedo A, Ehrenfreund P, Garcia-Descalzo L, Gómez F, Malki M, Amils R, Gaboyer F, Hickman-Lewis K, Westall F, Cabezas P, Walter N, Rettberg P (2020) Impact of simulated martian conditions on (facultatively) anaerobic bacterial strains from different Mars analogue sites. Curr Issues Mol Biol 38:103–122. https://doi.org/10.21775/cimb.038.103

    Article  PubMed  Google Scholar 

  10. Cross KL, Campbell JH, Balachandran M, Campbell AG, Cooper CJ, Griffen A, Heaton M, Joshi S, Klingeman D, Leys E, Yang Z, Parks JM, Podar M (2019) Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat Biotechnol 37(11):1314–1321. https://doi.org/10.1038/s41587-019-0260-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ (2020) Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol 18:241–256. https://doi.org/10.1038/s41579-020-0323-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lewis WH, Tahon G, Geesink P, Sousa DZ, Ettema TJG (2021) Innovations to culturing the uncultured microbial majority. Nat Rev Microbiol 19(4):225–240. https://doi.org/10.1038/s41579-020-00458-8

    Article  CAS  PubMed  Google Scholar 

  13. Apolinario EA, Sowers KR (1996) Plate colonization of Methanococcus maripaludis and Methanosarcina thermophila in a modified canning jar. FEMS Microbiol Lett 145:131–137. https://doi.org/10.1111/j.1574-6968.1996.tb08567.x

    Article  CAS  Google Scholar 

  14. Strobel HJ (2009) Basic laboratory culture methods for anaerobic bacteria. In: Mielenz J (ed) Biofuels. Methods in molecular biology (methods and protocols), vol 581. Humana Press, Totowa. https://doi.org/10.1007/978-1-60761-214-8_16

    Chapter  Google Scholar 

  15. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3b. Academic, New York, pp 117–132. http://www.jstor.org/stable/20111550

    Google Scholar 

  16. Hong W, Rao FQ, Zhao XX, Guo ZY, Chen YM, Wang B, Guan ZZ, Qi XL (2021) An inexpensive anaerobic chamber for the genetic manipulation of strictly anaerobic bacteria. Anaerobe 69:102349. https://doi.org/10.1016/j.anaerobe.2021.102349

    Article  CAS  PubMed  Google Scholar 

  17. Miller TL, Wolin MJ (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987. https://doi.org/10.1128/am.27.5.985-987.1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sowers KR (1995) Techniques for anaerobic growth. In: Robb FT, Sowers KR, DasSharma S, Place AR, Schreier HJ, Fleischmann EM (eds) Archaea: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  19. 19 McInerney- OUMicroLab (2011) Video 2- Media Preparation. YouTube. https://www.youtube.com/watch?v=NLK7e-n7EnU

  20. Arank A, Syed SA, Kenney EB, Freter R (1969) Isolation of anaerobic bacteria from human gingiva and mouse cecum by means of a simplified glove box procedure. Appl Microbiol 17:568–576. https://doi.org/10.1128/am.17.4.568-576.1969

    Article  CAS  PubMed  Google Scholar 

  21. Aranki A, Freter R (1972) Use of anaerobic glove boxes for the cultivation of strictly anaerobic bacteria. Am J Clin Nutr 25:1329–1334. https://doi.org/10.1093/ajcn/25.12.1329

    Article  CAS  PubMed  Google Scholar 

  22. Coy Laboratory Products (2022). https://coylab.com/products/anaerobic-chambers/

  23. Edwards T, McBride BC (1975) New method for the isolation and identification of methanogenic bacteria. Appl Microbiol 29:540–545. https://doi.org/10.1128/am.29.4.540-545.1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilkins TD, Walker CB (1975) Development of a micromethod for identification of anaerobic bacteria. Appl Microbiol 30:825–830. https://doi.org/10.1128/am.30.5.825-830.1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kröninger L, Gottschling J, Deppenmeier U (2017) Growth characteristics of Methanomassiliicoccus luminyensis and expression of methyltransferase encoding genes. Archaea 2017:2756573. https://doi.org/10.1155/2017/2756573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kurth JM, Nobu MK, Tamaki H, de Jonge N, Berger S, Jetten MSM, Yamamoto K, Mayumi D, Sakata S, Bai L, Cheng L, Nielsen JL, Kamagata Y, Wagner T, Welte CU (2021) Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds. ISME J 15(12):3549–3565. https://doi.org/10.1038/s41396-021-01025-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, of the US Department of Energy through grant DE-FG02-95ER20198 (to J.G.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Geovanni Santiago-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Santiago-Martínez, M.G., Ferry, J.G. (2023). Methods for Culturing Anaerobic Microorganisms. In: Weinert, E.E. (eds) Oxygen Sensing. Methods in Molecular Biology, vol 2648. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3080-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3080-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3079-2

  • Online ISBN: 978-1-0716-3080-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics