Skip to main content

Imaging Somatosensory Cortex: Human Functional Magnetic Resonance Imaging (fMRI)

  • Protocol
  • First Online:
Somatosensory Research Methods

Part of the book series: Neuromethods ((NM,volume 196))

Abstract

Functional magnetic resonance imaging (fMRI) is a powerful tool for imaging somatosensory cortex, providing a means to non-invasively measure cortical activity in awake and behaving humans. Notably, this technique has permitted the homunculus—a hallmark of primary somatosensory cortex (S1) organization—to be examined with unprecedented detail. With the development of high-resolution fMRI (mostly at ultra-high field, 7 Tesla), it is now possible to investigate the finer topographic details of the sensory homunculus in almost any individual. Moreover, fMRI can be used to investigate other various bottom-up response properties as well as more top-down perceptual and cognitive processes (e.g., attention and prediction) across a wide range of experimental conditions. This chapter mainly focuses on tactile experiments, outlining a number of experimental paradigms and analysis techniques; practical and participant-specific difficulties are noted. Although we focus on fMRI for imaging primary somatosensory cortex, this technique can also be used to image cortical activity in other areas involved in somatosensory processing, such as secondary somatosensory cortex (S2), insular cortex, or the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Penfield W, Boldrey E (1937) Somatic motor and sensory representations in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389

    Article  Google Scholar 

  2. Schott GD (1993) Penfield's homunculus: a note on cerebral cartography. J Neurol Neurosurg Psychiatry 56(4):329–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gandhoke GS, Belykh E, Zhao X, Leblanc R, Preul MC (2019) Edwin Boldrey and Wilder Penfield's Homunculus: a life given by Mrs. Cantlie (in and out of realism). World Neurosurg 132:377–388. https://doi.org/10.1016/j.wneu.2019.08.116

    Article  PubMed  Google Scholar 

  4. O’Neill GC, Sengupta A, Asghar M, Barratt EL, Besle J, Schluppeck D, Francis ST, Panchuelo RMS (2020) A probabilistic atlas of finger dominance in the primary somatosensory cortex. NeuroImage 217:116880

    Article  PubMed  Google Scholar 

  5. Akselrod M, Martuzzi R, Serino A, van der Zwaag W, Gassert R, Blanke O (2017) Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: a 7T fMRI study. NeuroImage 159:473–487. https://doi.org/10.1016/j.neuroimage.2017.06.021

    Article  PubMed  Google Scholar 

  6. Kuehn E, Dinse J, Jakobsen E, Long XY, Schafer A, Bazin PL, Villringer A, Sereno MI, Margulies DS (2017) Body topography Parcellates human sensory and motor cortex. Cereb Cortex 27(7):3790–3805. https://doi.org/10.1093/cercor/bhx026

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sanchez Panchuelo RM, Besle J, Schluppeck D, Humberstone M, Francis S (2018) Somatotopy in the human somatosensory system. Front Hum Neurosci 12:235. https://doi.org/10.3389/fnhum.2018.00235

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D (2010) Mapping human somatosensory cortex in individual subjects with 7T functional MRI. J Neurophysiol 103(5):2544–2556. https://doi.org/10.1152/jn.01017.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dempsey-Jones H, Wesselink DB, Friedman J, Makin TR (2019) Organized toe maps in extreme foot users. Cell Rep 28(11):2748–2756 e2744. https://doi.org/10.1016/j.celrep.2019.08.027

    Article  CAS  Google Scholar 

  10. Huang RS, Sereno MI (2007) Dodecapus: an MR-compatible system for somatosensory stimulation. NeuroImage 34(3):1060–1073. https://doi.org/10.1016/j.neuroimage.2006.10.024

    Article  PubMed  Google Scholar 

  11. Greenberg JH, Reivich M, Alavi A, Hand P, Rosenquist A, Rintelmann W, Stein A, Tusa R, Dann R, Christman D, Fowler J, MacGregor B, Wolf A (1981) Metabolic mapping of functional activity in human subjects with the [18F]fluorodeoxyglucose technique. Science 212(4495):678–680

    Article  CAS  PubMed  Google Scholar 

  12. Fox PT, Burton H, Raichle ME (1987) Mapping human somatosensory cortex with positron emission tomography. J Neurosurg 67(1):34–43. https://doi.org/10.3171/jns.1987.67.1.0034

    Article  CAS  PubMed  Google Scholar 

  13. Sakai K, Watanabe E, Onodera Y, Itagaki H, Yamamoto E, Koizumi H, Miyashita Y (1995) Functional mapping of the human somatosensory cortex with echo-planar MRI. Magn Reson Med 33(5):736–743

    Article  CAS  PubMed  Google Scholar 

  14. Puce A, Constable RT, Luby ML, McCarthy G, Nobre AC, Spencer DD, Gore JC, Allison T (1995) Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83(2):262–270. https://doi.org/10.3171/jns.1995.83.2.0262

    Article  CAS  PubMed  Google Scholar 

  15. Polonara G, Fabri M, Manzoni T, Salvolini U (1999) Localization of the first and second somatosensory areas in the human cerebral cortex with functional MR imaging. AJNR Am J Neuroradiol 20(2):199–205

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurth R, Villringer K, Mackert BM, Schwiemann J, Braun J, Curio G, Villringer A, Wolf KJ (1998) fMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation. Neuroreport 9(2):207–212

    Article  CAS  PubMed  Google Scholar 

  17. Gelnar PA, Krauss BR, Szeverenyi NM, Apkarian AV (1998) Fingertip representation in the human somatosensory cortex: an fMRI study. NeuroImage 7(4 Pt 1):261–283. https://doi.org/10.1006/nimg.1998.0341

    Article  CAS  PubMed  Google Scholar 

  18. Francis ST, Kelly EF, Bowtell R, Dunseath WJ, Folger SE, McGlone F (2000) fMRI of the responses to vibratory stimulation of digit tips. NeuroImage 11(3):188–202. https://doi.org/10.1006/nimg.2000.0541

    Article  CAS  PubMed  Google Scholar 

  19. Maldjian JA, Gottschalk A, Patel RS, Detre JA, Alsop DC (1999) The sensory somatotopic map of the human hand demonstrated at 4 Tesla. NeuroImage 10(1):55–62. https://doi.org/10.1006/nimg.1999.0448

    Article  CAS  PubMed  Google Scholar 

  20. Schweizer R, Voit D, Frahm J (2008) Finger representations in human primary somatosensory cortex as revealed by high-resolution functional MRI of tactile stimulation. NeuroImage 42(1):28–35. https://doi.org/10.1016/j.neuroimage.2008.04.184

    Article  PubMed  Google Scholar 

  21. Martuzzi R, van der Zwaag W, Farthouat J, Gruetter R, Blanke O (2014) Human finger somatotopy in areas 3b, 1, and 2: a 7T fMRI study using a natural stimulus. Hum Brain Mapp 35(1):213–226. https://doi.org/10.1002/hbm.22172

    Article  PubMed  Google Scholar 

  22. Sanchez-Panchuelo RM, Besle J, Beckett A, Bowtell R, Schluppeck D, Francis S (2012) Within-digit functional parcellation of Brodmann areas of the human primary somatosensory cortex using functional magnetic resonance imaging at 7 tesla. J Neurosci 32(45):15815–15822. https://doi.org/10.1523/JNEUROSCI.2501-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kolasinski J, Makin TR, Jbabdi S, Clare S, Stagg CJ, Johansen-Berg H (2016) Investigating the stability of fine-grain digit somatotopy in individual human participants. J Neurosci 36(4):1113–1127. https://doi.org/10.1523/JNEUROSCI.1742-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kikkert S, Kolasinski J, Jbabdi S, Tracey I, Beckmann CF, Johansen-Berg H, Makin TR (2016) Revealing the neural fingerprints of a missing hand. elife 5. https://doi.org/10.7554/eLife.15292

  25. Brouwer GJ, Arnedo V, Offen S, Heeger DJ, Grant AC (2015) Normalization in human somatosensory cortex. J Neurophysiol 114(5):2588–2599. https://doi.org/10.1152/jn.00939.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johansen-Berg H, Christensen V, Woolrich M, Matthews PM (2000) Attention to touch modulates activity in both primary and secondary somatosensory areas. Neuroreport 11(6):1237–1241

    Article  CAS  PubMed  Google Scholar 

  27. Hamalainen H, Hiltunen J, Titievskaja I (2000) fMRI activations of SI and SII cortices during tactile stimulation depend on attention. Neuroreport 11(8):1673–1676. https://doi.org/10.1097/00001756-200006050-00016

    Article  CAS  PubMed  Google Scholar 

  28. Nelson AJ, Staines WR, Graham SJ, McIlroy WE (2004) Activation in SI and SII: the influence of vibrotactile amplitude during passive and task-relevant stimulation. Brain Res Cogn Brain Res 19(2):174–184. https://doi.org/10.1016/j.cogbrainres.2003.11.013

    Article  PubMed  Google Scholar 

  29. Puckett AM, Bollmann S, Barth M, Cunnington R (2017) Measuring the effects of attention to individual fingertips in somatosensory cortex using ultra-high field (7T) fMRI. NeuroImage 161:179–187. https://doi.org/10.1016/j.neuroimage.2017.08.014

    Article  PubMed  Google Scholar 

  30. Yu Y, Huber L, Yang J, Jangraw DC, Handwerker DA, Molfese PJ, Chen G, Ejima Y, Wu J, Bandettini PA (2019) Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex. Sci Adv 5(5):eaav9053. https://doi.org/10.1126/sciadv.aav9053

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sanchez-Panchuelo RM, Besle J, Mougin O, Gowland P, Bowtell R, Schluppeck D, Francis S (2014) Regional structural differences across functionally parcellated Brodmann areas of human primary somatosensory cortex. NeuroImage 93(Pt 2):221–230. https://doi.org/10.1016/j.neuroimage.2013.03.044

    Article  PubMed  Google Scholar 

  32. Detre JA, Wang J (2002) Technical aspects and utility of fMRI using BOLD and ASL. Clin Neurophysiol 113(5):621–634. https://doi.org/10.1016/s1388-2457(02)00038-x

    Article  PubMed  Google Scholar 

  33. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–397. https://doi.org/10.1002/mrm.1910250220

    Article  CAS  PubMed  Google Scholar 

  34. Glover GH (2011) Overview of functional magnetic resonance imaging. Neurosurg Clin N Am 22(2):133–139, vii. https://doi.org/10.1016/j.nec.2010.11.001

    Article  PubMed  PubMed Central  Google Scholar 

  35. Borogovac A, Asllani I (2012) Arterial spin labeling (ASL) fMRI: advantages, theoretical constrains and experimental challenges in neurosciences. Int J Biomed Imaging 2012:818456

    PubMed  PubMed Central  Google Scholar 

  36. Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci 89(1):212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu H, van Zijl PC (2012) A review of the development of Vascular-Space-Occupancy (VASO) fMRI. NeuroImage 62(2):736–742. https://doi.org/10.1016/j.neuroimage.2012.01.013

    Article  PubMed  Google Scholar 

  38. Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23(10):3963–3971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mountcastle VB (1957) Modality and topographic properties of single neurons of cat's somatic sensory cortex. J Neurophysiol 20(4):408–434. https://doi.org/10.1152/jn.1957.20.4.408

    Article  CAS  PubMed  Google Scholar 

  40. Menon RS, Ogawa S, Strupp JP, Ugurbil K (1997a) Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. J Neurophysiol 77(5):2780–2787. https://doi.org/10.1152/jn.1997.77.5.2780

    Article  CAS  PubMed  Google Scholar 

  41. Yacoub E, Shmuel A, Logothetis N, Ugurbil K (2007) Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. NeuroImage 37(4):1161–1177. https://doi.org/10.1016/j.neuroimage.2007.05.020

    Article  PubMed  Google Scholar 

  42. Feinberg DA, Vu AT, Beckett A (2018) Pushing the limits of ultra-high resolution human brain imaging with SMS-EPI demonstrated for columnar level fMRI. NeuroImage 164:155–163. https://doi.org/10.1016/j.neuroimage.2017.02.020

    Article  PubMed  Google Scholar 

  43. Buxton RB, Uludağ K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. NeuroImage 23:S220–S233

    Article  PubMed  Google Scholar 

  44. Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Glasser MF, Miller KL, Ugurbil K, Yacoub E (2010) Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One 5(12):e15710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA (2016) Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 75(1):63–81

    Article  PubMed  Google Scholar 

  46. Bollmann S, Puckett AM, Cunnington R, Barth M (2018) Serial correlations in single-subject fMRI with sub-second TR. NeuroImage 166:152–166

    Article  PubMed  Google Scholar 

  47. Lewis LD, Setsompop K, Rosen BR, Polimeni JR (2016) Fast fMRI can detect oscillatory neural activity in humans. Proc Natl Acad Sci 113(43):E6679–E6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aquino KM, Schira MM, Robinson PA, Drysdale PM, Breakspear M (2012) Hemodynamic traveling waves in human visual cortex. PLoS Comput Biol 8(3):e1002435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Puckett AM, Aquino KM, Robinson PA, Breakspear M, Schira MM (2016) The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex. NeuroImage 139:240–248. https://doi.org/10.1016/j.neuroimage.2016.06.019

    Article  PubMed  Google Scholar 

  50. Erberich SG, Panigrahy A, Friedlich P, Seri I, Nelson MD, Gilles F (2006) Somatosensory lateralization in the newborn brain. NeuroImage 29(1):155–161

    Article  PubMed  Google Scholar 

  51. Cassady K, Ruitenberg MFL, Reuter-Lorenz PA, Tommerdahl M, Seidler RD (2020) Neural dedifferentiation across the lifespan in the motor and somatosensory systems. Cerebral Cortex (New York, N Y : 1991) 30(6):3704–3716

    Article  PubMed  Google Scholar 

  52. Makin TR, Flor H (2020) Brain (re)organisation following amputation: implications for phantom limb pain. NeuroImage 218:116943

    Article  PubMed  Google Scholar 

  53. MacIver K, Lloyd D, Kelly S, Roberts N, Nurmikko T (2008) Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain 131(8):2181–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim W, Kim SK, Nabekura J (2017) Functional and structural plasticity in the primary somatosensory cortex associated with chronic pain. J Neurochem 141(4):499–506

    Article  CAS  PubMed  Google Scholar 

  55. Selvarajah D, Wilkinson ID, Fang F, Sankar A, Davies J, Boland E, Harding J, Rao G, Gandhi R, Tracey I (2019) Structural and functional abnormalities of the primary somatosensory cortex in diabetic peripheral neuropathy: a multimodal MRI study. Diabetes 68(4):796–806

    Article  CAS  PubMed  Google Scholar 

  56. Foki T, Pirker W, Klinger N, Geissler A, Rath J, Steinkellner T, Hoellinger I, Gruber S, Haubenberger D, Lehrner J, Pusswald G, Trattnig S, Auff E, Beisteiner R (2010) FMRI correlates of apraxia in Parkinson's disease patients OFF medication. Exp Neurol 225(2):416–422

    Article  CAS  PubMed  Google Scholar 

  57. Foki T, Pirker W, GeiSsler A, Haubenberger D, Hilbert M, Hoellinger I, Wurnig M, Rath J, Lehrner J, Matt E, Fischmeister F, Trattnig S, Auff E, Beisteiner R (2015) Finger dexterity deficits in Parkinson's disease and somatosensory cortical dysfunction. Parkinsonism Relat Disord 21(3):259–265

    Article  PubMed  Google Scholar 

  58. Simonyan K, Ludlow CL (2010) Abnormal activation of the primary somatosensory cortex in spasmodic dysphonia: an fMRI study. Cerebral Cortex (New York, N Y : 1991) 20(11):2749–2759

    Article  PubMed  Google Scholar 

  59. Butterworth S, Francis S, Kelly E, McGlone F, Bowtell R, Sawle GV (2003) Abnormal cortical sensory activation in dystonia: an fMRI study. Mov Disord 18(6):673–682

    Article  PubMed  Google Scholar 

  60. Nelson AJ, Blake DT, Chen R (2009) Digit-specific aberrations in the primary somatosensory cortex in writer's cramp. Ann Neurol 66(2):146–154

    Article  PubMed  Google Scholar 

  61. Napadow V, Kettner N, Ryan A, Kwong KK, Audette J, Hui KK (2006) Somatosensory cortical plasticity in carpal tunnel syndrome—a cross-sectional fMRI evaluation. NeuroImage 31(2):520–530

    Article  PubMed  Google Scholar 

  62. Kang L, Zhang A, Sun N, Liu P, Yang C, Li G, Liu Z, Wang Y, Zhang K (2018) Functional connectivity between the thalamus and the primary somatosensory cortex in major depressive disorder: a resting-state fMRI study. BMC Psychiatry 18(1):339

    Article  PubMed  PubMed Central  Google Scholar 

  63. Farivar R, Grigorov F, van der Kouwe AJ, Wald LL, Keil B (2016) Dense, shape-optimized posterior 32-channel coil for submillimeter functional imaging of visual cortex at 3T. Magn Reson Med 76(1):321–328. https://doi.org/10.1002/mrm.25815

    Article  CAS  PubMed  Google Scholar 

  64. Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. NeuroImage 26(1):243–250. https://doi.org/10.1016/j.neuroimage.2005.01.007

    Article  Google Scholar 

  65. Schluppeck D, Sanchez-Panchuelo RM, Francis ST (2018) Exploring structure and function of sensory cortex with 7T MRI. NeuroImage 164:10–17. https://doi.org/10.1016/j.neuroimage.2017.01.081

    Article  PubMed  Google Scholar 

  66. Renvall V, Kauramaki J, Malinen S, Hari R, Nummenmaa L (2020) Imaging real-time tactile interaction with two-person dual-coil fMRI. Front Psych 11:279

    Article  Google Scholar 

  67. Salomon R, Darulova J, Narsude M, Van Der Zwaag W (2014) Comparison of an 8-channel and a 32-channel coil for high-resolution FMRI at 7 T. Brain Topogr 27(2):209–212

    Article  PubMed  Google Scholar 

  68. Chang C, Cunningham JP, Glover GH (2009) Influence of heart rate on the BOLD signal: the cardiac response function. NeuroImage 44(3):857–869. https://doi.org/10.1016/j.neuroimage.2008.09.029

    Article  PubMed  Google Scholar 

  69. Menon V, Lim K, Anderson J, Johnson J, Pfefferbaum A (1997b) Design and efficacy of a head-coil bite bar for reducing movement-related artifacts during functional MRI scanning. Behav Res Methods Instrum Comput 29(4):589–594

    Article  Google Scholar 

  70. Edward V, Windischberger C, Cunnington R, Erdler M, Lanzenberger R, Mayer D, Endl W, Beisteiner R (2000) Quantification of fMRI artifact reduction by a novel plaster cast head holder. Hum Brain Mapp 11(3):207–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hsu J-J, Glover GH (2005) Mitigation of susceptibility-induced signal loss in neuroimaging using localized shim coils. Magn Reson Med 53(2):243–248

    Article  PubMed  Google Scholar 

  72. Stockmann JP, Wald LL (2018) In vivo B0 field shimming methods for MRI at 7T. NeuroImage 168:71–87

    Article  PubMed  Google Scholar 

  73. Trampel R, Reimer E, Huber L, Ivanov D, Heidemann RM, Schäfer A, Turner R (2014) Anatomical brain imaging at 7T using two‐dimensional GRASE. Magn Reson Med 72(5):1291–1301

    Article  PubMed  Google Scholar 

  74. Mugler JP 3rd, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15(1):152–157

    Article  PubMed  Google Scholar 

  75. Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele PF, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage 49(2):1271–1281. https://doi.org/10.1016/j.neuroimage.2009.10.002

    Article  PubMed  Google Scholar 

  76. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

    Article  CAS  PubMed  Google Scholar 

  77. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210. https://doi.org/10.1002/mrm.10171

    Article  PubMed  Google Scholar 

  78. Poser BA, Koopmans PJ, Witzel T, Wald LL, Barth M (2010) Three dimensional echo-planar imaging at 7 Tesla. NeuroImage 51(1):261–266. https://doi.org/10.1016/j.neuroimage.2010.01.108

    Article  CAS  PubMed  Google Scholar 

  79. Poser BA, Kemper VG, Ivanov D, Uladag K, Barth M (2013) CAIPIRINHA-accelerated 3D EPI for high temporal and/or spatial resolution EPI acquisitions. In: Proceedings of the ESMRMB, Toulouse, France

    Google Scholar 

  80. Huber L, Ivanov D, Handwerker DA, Marrett S, Guidi M, Uludag K, Bandettini PA, Poser BA (2018) Techniques for blood volume fMRI with VASO: from low-resolution mapping towards sub-millimeter layer-dependent applications. NeuroImage 164:131–143. https://doi.org/10.1016/j.neuroimage.2016.11.039

    Article  PubMed  Google Scholar 

  81. Hendriks AD, D'Agata F, Raimondo L, Schakel T, Geerts L, Luijten PR, Klomp DW, Petridou N (2020) Pushing functional MRI spatial and temporal resolution further: high‐density receive arrays combined with shot‐selective 2D CAIPIRINHA for 3D echo‐planar imaging at 7 T. NMR Biomed 33(5):e4281

    Article  PubMed  PubMed Central  Google Scholar 

  82. Oakes TR, Johnstone T, Walsh KO, Greischar LL, Alexander AL, Fox AS, Davidson RJ (2005) Comparison of fMRI motion correction software tools. NeuroImage 28(3):529–543

    Article  CAS  PubMed  Google Scholar 

  83. Zaitsev M, Akin B, LeVan P, Knowles BR (2017) Prospective motion correction in functional MRI. NeuroImage 154:33–42

    Article  PubMed  Google Scholar 

  84. Hoinkiss DC, Erhard P, Breutigam N-J, von Samson-Himmelstjerna F, Günther M, Porter DA (2019) Prospective motion correction in functional MRI using simultaneous multislice imaging and multislice-to-volume image registration. NeuroImage 200:159–173

    Article  PubMed  Google Scholar 

  85. Jezzard P, Balaban RS (1995) Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 34(1):65–73

    Article  CAS  PubMed  Google Scholar 

  86. Jezzard P (2012) Correction of geometric distortion in fMRI data. NeuroImage 62(2):648–651

    Article  PubMed  Google Scholar 

  87. Visser E, Poser BA, Barth M, Zwiers MP (2012) Reference‐free unwarping of EPI data using dynamic off‐resonance correction with multiecho acquisition (DOCMA). Magn Reson Med 68(4):1247–1254

    Article  PubMed  Google Scholar 

  88. Dymerska B, Poser BA, Bogner W, Visser E, Eckstein K, Cardoso P, Barth M, Trattnig S, Robinson SD (2016) Correcting dynamic distortions in 7T echo planar imaging using a jittered echo time sequence. Magn Reson Med 76(5):1388–1399

    Article  PubMed  Google Scholar 

  89. Dymerska B, Poser BA, Barth M, Trattnig S, Robinson SD (2018) A method for the dynamic correction of B0-related distortions in single-echo EPI at 7 T. NeuroImage 168:321–331

    Article  PubMed  Google Scholar 

  90. Andersson JL, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20(2):870–888

    Article  PubMed  Google Scholar 

  91. Duong ST, Phung SL, Bouzerdoum A, Schira MM (2020) An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding EPI images. Magn Reson Imaging 71:1

    Article  PubMed  Google Scholar 

  92. Duong S, Phung SL, Bouzerdoum A, Taylor HB, Puckett A, Schira MM (2020) Susceptibility artifact correction for sub-millimeter fMRI using inverse phase encoding registration and T1 weighted regularization. J Neurosci Methods 336:108625

    Article  CAS  PubMed  Google Scholar 

  93. Clarke WT, Mougin O, Driver ID, Rua C, Morgan AT, Asghar M, Clare S, Francis S, Wise RG, Rodgers CT (2020) Multi-site harmonization of 7 tesla MRI neuroimaging protocols. NeuroImage 206:116335

    Article  PubMed  Google Scholar 

  94. Saad ZS, Glen DR, Chen G, Beauchamp MS, Desai R, Cox RW (2009) A new method for improving functional-to-structural MRI alignment using local Pearson correlation. NeuroImage 44(3):839–848

    Article  PubMed  Google Scholar 

  95. Greve DN, Fischl B (2009) Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48(1):63–72

    Article  PubMed  Google Scholar 

  96. Huang P, Carlin JD, Henson RN, Correia MM (2020) Improved motion correction of submillimetre 7T fMRI time series with boundary-based registration (BBR). NeuroImage 210:116542

    Article  PubMed  Google Scholar 

  97. Polimeni JR, Renvall V, Zaretskaya N, Fischl B (2018) Analysis strategies for high-resolution UHF-fMRI data. NeuroImage 168:296–320

    Article  PubMed  Google Scholar 

  98. Van Essen DC (2012) Cortical cartography and Caret software. NeuroImage 62(2):757–764

    Article  PubMed  Google Scholar 

  99. Fischl B (2012) FreeSurfer. NeuroImage 62(2):774–781

    Article  PubMed  Google Scholar 

  100. Polimeni JR, Fischl B, Greve DN, Wald LL (2010) Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1. NeuroImage 52(4):1334–1346. https://doi.org/10.1016/j.neuroimage.2010.05.005

    Article  PubMed  Google Scholar 

  101. Worsley KJ, Friston KJ (1995) Analysis of fMRI time-series revisited—again. NeuroImage 2(3):173–181

    Article  CAS  PubMed  Google Scholar 

  102. Liu P, Calhoun V, Chen Z (2017) Functional overestimation due to spatial smoothing of fMRI data. J Neurosci Methods 291:1–12

    Article  PubMed  Google Scholar 

  103. de Hollander G, Keuken MC, Forstmann BU (2015) The subcortical cocktail problem; mixed signals from the subthalamic nucleus and substantia nigra. PLoS One 10(3):e0120572

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kuehn E, Pleger B (2020) Encoding schemes in somatosensation: from micro-to meta-topography. NeuroImage 223:117255

    Article  PubMed  Google Scholar 

  105. Pfannmoller JP, Greiner M, Balasubramanian M, Lotze M (2016) High-resolution fMRI investigations of the fingertip somatotopy and variability in BA3b and BA1 of the primary somatosensory cortex. Neuroscience 339:667–677. https://doi.org/10.1016/j.neuroscience.2016.10.036

    Article  CAS  PubMed  Google Scholar 

  106. Jo HJ, Lee J-M, Kim J-H, Shin Y-W, Kim I-Y, Kwon JS, Kim SI (2007) Spatial accuracy of fMRI activation influenced by volume-and surface-based spatial smoothing techniques. NeuroImage 34(2):550–564

    Article  PubMed  Google Scholar 

  107. Blazejewska AI, Fischl B, Wald LL, Polimeni JR (2019) Intracortical smoothing of small-voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large-voxel fMRI data. NeuroImage 189:601–614

    Article  PubMed  Google Scholar 

  108. Warnking J, Dojat M, Guérin-Dugué A, Delon-Martin C, Olympieff S, Richard N, Chéhikian A, Segebarth C (2002) fMRI retinotopic mapping—step by step. NeuroImage 17(4):1665–1683

    Article  CAS  PubMed  Google Scholar 

  109. Wandell BA, Winawer J (2011) Imaging retinotopic maps in the human brain. Vis Res 51(7):718–737. https://doi.org/10.1016/j.visres.2010.08.004

    Article  PubMed  Google Scholar 

  110. Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369(6481):525. https://doi.org/10.1038/369525a0

    Article  CAS  PubMed  Google Scholar 

  111. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268(5212):889–893

    Article  CAS  PubMed  Google Scholar 

  112. DeYoe EA, Bandettini P, Neitz J, Miller D, Winans P (1994) Functional magnetic resonance imaging (FMRI) of the human brain. J Neurosci Methods 54(2):171–187

    Article  CAS  PubMed  Google Scholar 

  113. DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, Miller D, Neitz J (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci U S A 93(6):2382–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Engel SA (2012) The development and use of phase-encoded functional MRI designs. NeuroImage 62(2):1195–1200. https://doi.org/10.1016/j.neuroimage.2011.09.059

    Article  PubMed  Google Scholar 

  115. Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time‐course data sets in functional MRI of the human brain. Magn Reson Med 30(2):161–173

    Article  CAS  PubMed  Google Scholar 

  116. Saad ZS, DeYoe EA, Ropella KM (2003) Estimation of FMRI response delays. NeuroImage 18(2):494–504

    Article  PubMed  Google Scholar 

  117. Servos P, Zacks J, Rumelhart DE, Glover GH (1998) Somatotopy of the human arm using fMRI. Neuroreport 9(4):605–609

    Article  CAS  PubMed  Google Scholar 

  118. Puckett AM, DeYoe EA (2015) The attentional field revealed by single-voxel modeling of fMRI time courses. J Neurosci 35(12):5030–5042. https://doi.org/10.1523/JNEUROSCI.3754-14.2015

    Article  PubMed  PubMed Central  Google Scholar 

  119. Nelson AJ, Chen R (2008) Digit somatotopy within cortical areas of the postcentral gyrus in humans. Cereb Cortex 18(10):2341–2351

    Article  PubMed  Google Scholar 

  120. Deuchert M, Ruben J, Schwiemann J, Meyer R, Thees S, Krause T, Blankenburg F, Villringer K, Kurth R, Curio G (2002) Event-related fMRI of the somatosensory system using electrical finger stimulation. Neuroreport 13(3):365–369

    Article  PubMed  Google Scholar 

  121. Besle J, Sanchez-Panchuelo RM, Bowtell R, Francis S, Schluppeck D (2014) Event-related fMRI at 7T reveals overlapping cortical representations for adjacent fingertips in S1 of individual subjects. Hum Brain Mapp 35(5):2027–2043. https://doi.org/10.1002/hbm.22310

    Article  PubMed  Google Scholar 

  122. Besle J, Sanchez-Panchuelo RM, Bowtell R, Francis S, Schluppeck D (2013) Single-subject fMRI mapping at 7 T of the representation of fingertips in S1: a comparison of event-related and phase-encoding designs. J Neurophysiol 109(9):2293–2305. https://doi.org/10.1152/jn.00499.2012

    Article  PubMed  PubMed Central  Google Scholar 

  123. Da Rocha AS, Sanchez Panchuelo RM, Francis S (2020) A data-driven multi-scale technique for fMRI mapping of the human somatosensory cortex. Brain Topogr 33(1):22–36. https://doi.org/10.1007/s10548-019-00728-6

    Article  Google Scholar 

  124. Puckett AM, Bollmann S, Junday K, Barth M, Cunnington R (2020) Bayesian population receptive field modeling in human somatosensory cortex. NeuroImage 208:116465. https://doi.org/10.1016/j.neuroimage.2019.116465

    Article  PubMed  Google Scholar 

  125. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15(4):870–878. https://doi.org/10.1006/nimg.2001.1037

    Article  PubMed  Google Scholar 

  126. Nichols T, Hayasaka S (2003) Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Methods Med Res 12(5):419–446

    Article  PubMed  Google Scholar 

  127. Lohmann G, Stelzer J, Lacosse E, Kumar VJ, Mueller K, Kuehn E, Grodd W, Scheffler K (2018) LISA improves statistical analysis for fMRI. Nat Commun 9(1):1–9

    Article  CAS  Google Scholar 

  128. Lederman S, Gati J, Servos P, Wilson D (2001) fMRI-derived cortical maps for haptic shape, texture, and hardness. Cogn Brain Res 12(2):307–313

    Article  Google Scholar 

  129. Kitada R, Doizaki R, Kwon J, Tanigawa T, Nakagawa E, Kochiyama T, Kajimoto H, Sakamoto M, Sadato N (2019) Brain networks underlying tactile softness perception: a functional magnetic resonance imaging study. NeuroImage 197:156–166

    Article  PubMed  Google Scholar 

  130. Moulton EA, Pendse G, Becerra LR, Borsook D (2012) BOLD responses in somatosensory cortices better reflect heat sensation than pain. J Neurosci 32(17):6024–6031. https://doi.org/10.1523/JNEUROSCI.0006-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Talbot WH, Darian-Smith I, Kornhuber HH, Mountcastle VB (1968) The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J Neurophysiol 31(2):301–334

    Article  CAS  PubMed  Google Scholar 

  132. Harrington GS, Downs JH III (2001) FMRI mapping of the somatosensory cortex with vibratory stimuli: is there a dependency on stimulus frequency? Brain Res 897(1–2):188–192

    Article  CAS  PubMed  Google Scholar 

  133. Chung YG, Kim J, Han SW, Kim H-S, Choi MH, Chung S-C, Park J-Y, Kim S-P (2013) Frequency-dependent patterns of somatosensory cortical responses to vibrotactile stimulation in humans: a fMRI study. Brain Res 1504:47–57

    Article  CAS  PubMed  Google Scholar 

  134. Chung YG, Han SW, Kim H-S, Chung S-C, Park J-Y, Wallraven C, Kim S-P (2015) Adaptation of cortical activity to sustained pressure stimulation on the fingertip. BMC Neurosci 16(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  135. Pleger B, Ruff CC, Blankenburg F, Bestmann S, Wiech K, Stephan KE, Capilla A, Friston KJ, Dolan RJ (2006) Neural coding of tactile decisions in the human prefrontal cortex. J Neurosci 26(48):12596–12601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kuehn E, Trampel R, Mueller K, Turner R, Schütz-Bosbach S (2013) Judging roughness by sight—a 7-tesla fMRI study on responsivity of the primary somatosensory cortex during observed touch of self and others. Hum Brain Mapp 34(8):1882–1895

    Article  PubMed  Google Scholar 

  137. Schmidt TT, Blankenburg F (2019) The somatotopy of mental tactile imagery. Front Hum Neurosci 13:10

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kaas AL, Goebel R, Valente G, Sorger B (2019) Topographic somatosensory imagery for real-time fMRI Brain-Computer Interfacing. Front Hum Neurosci 13:427

    Article  PubMed  PubMed Central  Google Scholar 

  139. Tang K, Staines WR, Black SE, McIlroy WE (2009) Novel vibrotactile discrimination task for investigating the neural correlates of short-term learning with fMRI. J Neurosci Methods 178(1):65–74

    Article  PubMed  Google Scholar 

  140. van der Zwaag W, Gruetter R, Martuzzi R (2015) Stroking or Buzzing? A comparison of somatosensory touch stimuli using 7 Tesla fMRI. PLoS One 10(8):e0134610

    Article  PubMed  PubMed Central  Google Scholar 

  141. Löken LS, Wessberg J, McGlone F, Olausson H (2009) Coding of pleasant touch by unmyelinated afferents in humans. Nat Neurosci 12(5):547

    Article  PubMed  Google Scholar 

  142. Sanchez Panchuelo RM, Eldeghaidy S, Marshall A, McGlone F, Francis ST, Favorov O (2020) A nociresponsive specific area of human somatosensory cortex within BA3a: BA3c? NeuroImage 221:117187. https://doi.org/10.1016/j.neuroimage.2020.117187

    Article  Google Scholar 

  143. Marques JP, Norris DG (2018) How to choose the right MR sequence for your research question at 7 T and above? NeuroImage 168:119–140

    Article  PubMed  Google Scholar 

  144. Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, Kent JD, Goncalves M, DuPre E, Snyder M (2019) fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods 16(1):111–116

    Article  CAS  PubMed  Google Scholar 

  145. van der Zwaag W, Buur PF, Fracasso A, van Doesum T, Uludağ K, Versluis MJ, Marques JP (2018) Distortion-matched T1 maps and unbiased T1-weighted images as anatomical reference for high-resolution fMRI. NeuroImage 176:41–55

    Article  PubMed  Google Scholar 

  146. McGonigle DJ, Howseman AM, Athwal BS, Friston KJ, Frackowiak R, Holmes AP (2000) Variability in fMRI: an examination of intersession differences. NeuroImage 11(6):708–734

    Article  CAS  PubMed  Google Scholar 

  147. McGonigle DJ (2012) Test–retest reliability in fMRI: or how I learned to stop worrying and love the variability. NeuroImage 62(2):1116–1120

    Article  PubMed  Google Scholar 

  148. Kaneko T, Caria MA, Asanuma H (1994) Information processing within the motor cortex. II. Intracortical connections between neurons receiving somatosensory cortical input and motor output neurons of the cortex. J Comp Neurol 345(2):172–184

    Article  Google Scholar 

  149. Arce-McShane FI, Ross CF, Takahashi K, Sessle BJ, Hatsopoulos NG (2016) Primary motor and sensory cortical areas communicate via spatiotemporally coordinated networks at multiple frequencies. Proc Natl Acad Sci 113(18):5083–5088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Farkas T, Kis Z, Toldi J, Wolff JR (1999) Activation of the primary motor cortex by somatosensory stimulation in adult rats is mediated mainly by associational connections from the somatosensory cortex. Neuroscience 90(2):353–361. https://doi.org/10.1016/s0306-4522(98)00451-5

    Article  CAS  PubMed  Google Scholar 

  151. Pavlides C, Miyashita E, Asanuma H (1993) Projection from the sensory to the motor cortex is important in learning motor skills in the monkey. J Neurophysiol 70(2):733–741. https://doi.org/10.1152/jn.1993.70.2.733

    Article  CAS  PubMed  Google Scholar 

  152. Reed CL, Shoham S, Halgren E (2004) Neural substrates of tactile object recognition: an fMRI study. Hum Brain Mapp 21(4):236–246

    Article  PubMed  PubMed Central  Google Scholar 

  153. Christensen MS, Lundbye-Jensen J, Geertsen SS, Petersen TH, Paulson OB, Nielsen JB (2007) Premotor cortex modulates somatosensory cortex during voluntary movements without proprioceptive feedback. Nat Neurosci 10(4):417–419

    Article  CAS  PubMed  Google Scholar 

  154. Ackerley R, Hassan E, Curran A, Wessberg J, Olausson H, McGlone F (2012) An fMRI study on cortical responses during active self-touch and passive touch from others. Front Behav Neurosci 6:51

    Article  PubMed  PubMed Central  Google Scholar 

  155. Schellekens W, Petridou N, Ramsey NF (2018) Detailed somatotopy in primary motor and somatosensory cortex revealed by Gaussian population receptive fields. NeuroImage 179:337–347. https://doi.org/10.1016/j.neuroimage.2018.06.062

    Article  PubMed  Google Scholar 

  156. Hluštík P, Solodkin A, Gullapalli RP, Noll DC, Small SL (2001) Somatotopy in human primary motor and somatosensory hand representations revisited. Cereb Cortex 11(4):312–321

    Article  PubMed  Google Scholar 

  157. Saadon-Grosman N, Arzy S, Loewenstein Y (2020) Hierarchical cortical gradients in somatosensory processing. NeuroImage 222:117257

    Article  PubMed  Google Scholar 

  158. Mancini F, Wang AP, Schira MM, Isherwood ZJ, McAuley JH, Iannetti GD, Sereno MI, Moseley GL, Rae CD (2019) Fine-grained mapping of cortical somatotopies in chronic complex regional pain syndrome. J Neurosci 39(46):9185–9196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kell CA, von Kriegstein K, Rösler A, Kleinschmidt A, Laufs H (2005) The sensory cortical representation of the human penis: revisiting somatotopy in the male homunculus. J Neurosci 25(25):5984–5987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kim HS, Choi MH, Chung YG, Kim SP, Jun JH, Park JY, Yi JH, Park JR, Lim DW, Chung SC (2013) Development of a simple MR-compatible vibrotactile stimulator using a planar-coil-type actuator. Behav Res Methods 45(2):364–371. https://doi.org/10.3758/s13428-012-0268-z

    Article  PubMed  Google Scholar 

  161. Choi MH, Kim SP, Kim HS, Chung SC (2016) Inter- and intradigit somatotopic map of high-frequency vibration stimulations in human primary somatosensory cortex. Medicine (Baltimore) 95(20):e3714. https://doi.org/10.1097/MD.0000000000003714

    Article  PubMed  Google Scholar 

  162. Li Hegner Y, Lee Y, Grodd W, Braun C (2010) Comparing tactile pattern and vibrotactile frequency discrimination: a human FMRI study. J Neurophysiol 103(6):3115–3122. https://doi.org/10.1152/jn.00940.2009

    Article  PubMed  Google Scholar 

  163. Schweisfurth MA, Frahm J, Schweizer R (2014) Individual fMRI maps of all phalanges and digit bases of all fingers in human primary somatosensory cortex. Front Hum Neurosci 8:658. https://doi.org/10.3389/fnhum.2014.00658

    Article  PubMed  PubMed Central  Google Scholar 

  164. Mancini F, Haggard P, Iannetti GD, Longo MR, Sereno MI (2012) Fine-grained nociceptive maps in primary somatosensory cortex. J Neurosci 32(48):17155–17162. https://doi.org/10.1523/JNEUROSCI.3059-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bingel U, Lorenz J, Glauche V, Knab R, Glascher J, Weiller C, Buchel C (2004) Somatotopic organization of human somatosensory cortices for pain: a single trial fMRI study. NeuroImage 23(1):224–232

    Article  CAS  PubMed  Google Scholar 

  166. Spiegel J, Tintera J, Gawehn J, Stoeter P, Treede RD (1999) Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation. Clin Neurophysiol 110(1):47–52. https://doi.org/10.1016/s0168-5597(98)00043-4

    Article  CAS  PubMed  Google Scholar 

  167. McGlone F, Kelly EF, Trulsson M, Francis ST, Westling G, Bowtell R (2002) Functional neuroimaging studies of human somatosensory cortex. Behav Brain Res 135(1–2):147–158

    Article  PubMed  Google Scholar 

  168. Sanchez Panchuelo RM, Ackerley R, Glover PM, Bowtell RW, Wessberg J, Francis ST, McGlone F (2016) Mapping quantal touch using 7 Tesla functional magnetic resonance imaging and single-unit intraneural microstimulation. elife 5. https://doi.org/10.7554/eLife.12812

  169. Kampe KK, Jones RA, Auer DP (2000) Frequency dependence of the functional MRI response after electrical median nerve stimulation. Hum Brain Mapp 9(2):106–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ferretti A, Babiloni C, Arienzo D, Del Gratta C, Rossini PM, Tartaro A, Romani GL (2007) Cortical brain responses during passive nonpainful median nerve stimulation at low frequencies (0.5–4 Hz): an fMRI study. Hum Brain Mapp 28(7):645–653

    Article  Google Scholar 

  171. Overduin SA, Servos P (2004) Distributed digit somatotopy in primary somatosensory cortex. NeuroImage 23(2):462–472. https://doi.org/10.1016/j.neuroimage.2004.06.024

    Article  PubMed  Google Scholar 

  172. Stringer EA, Chen LM, Friedman RM, Gatenby C, Gore JC (2011) Differentiation of somatosensory cortices by high-resolution fMRI at 7 T. NeuroImage 54(2):1012–1020

    Article  PubMed  Google Scholar 

  173. Servos P, Lederman S, Wilson D, Gati J (2001) fMRI-derived cortical maps for haptic shape, texture, and hardness. Brain Res Cogn Brain Res 12(2):307–313. https://doi.org/10.1016/s0926-6410(01)00041-6

    Article  CAS  PubMed  Google Scholar 

  174. Murty NAR, Teng S, Beeler D, Mynick A, Oliva A, Kanwisher N (2020) Visual experience is not necessary for the development of face-selectivity in the lateral fusiform gyrus. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.2004607117

  175. Huber L, Finn ES, Handwerker DA, Bönstrup M, Glen DR, Kashyap S, Ivanov D, Petridou N, Marrett S, Goense J (2020) Sub-millimeter fMRI reveals multiple topographical digit representations that form action maps in human motor cortex. NeuroImage 208:116463

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Puckett, A.M., Sanchez Panchuelo, R.M. (2023). Imaging Somatosensory Cortex: Human Functional Magnetic Resonance Imaging (fMRI). In: Holmes, N.P. (eds) Somatosensory Research Methods. Neuromethods, vol 196. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3068-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3068-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3067-9

  • Online ISBN: 978-1-0716-3068-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics