Skip to main content

Mitochondrial Inheritance Following Nuclear Transfer: From Cloned Animals to Patients with Mitochondrial Disease

  • Protocol
  • First Online:
Somatic Cell Nuclear Transfer Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2647))

Abstract

Mitochondria are indispensable power plants of eukaryotic cells that also act as a major biochemical hub. As such, mitochondrial dysfunction, which can originate from mutations in the mitochondrial genome (mtDNA), may impair organism fitness and lead to severe diseases in humans. MtDNA is a multi-copy, highly polymorphic genome that is uniparentally transmitted through the maternal line. Several mechanisms act in the germline to counteract heteroplasmy (i.e., coexistence of two or more mtDNA variants) and prevent expansion of mtDNA mutations. However, reproductive biotechnologies such as cloning by nuclear transfer can disrupt mtDNA inheritance, resulting in new genetic combinations that may be unstable and have physiological consequences. Here, we review the current understanding of mitochondrial inheritance, with emphasis on its pattern in animals and human embryos generated by nuclear transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rojansky R, Cha M-Y, Chan DC (2016) Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. eLife 5:e17896. https://doi.org/10.7554/eLife.17896

    Article  CAS  PubMed  Google Scholar 

  2. Wei W, Pagnamenta AT, Gleadall N et al (2020) Nuclear-mitochondrial DNA segments resemble paternally inherited mitochondrial DNA in humans. Nat Commun 11:1740. https://doi.org/10.1038/s41467-020-15336-3

    Article  CAS  PubMed  Google Scholar 

  3. Sutovsky P, Moreno RD, Ramalho-Santos J et al (1999) Ubiquitin tag for sperm mitochondria. Nature 402:371–372. https://doi.org/10.1038/46466

    Article  CAS  PubMed  Google Scholar 

  4. Allio R, Donega S, Galtier N, Nabholz B (2017) Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Mol Biol Evol 34:2762–2772. https://doi.org/10.1093/molbev/msx197

    Article  CAS  PubMed  Google Scholar 

  5. James JE, Piganeau G, Eyre-Walker A (2016) The rate of adaptive evolution in animal mitochondria. Mol Ecol 25:67–78. https://doi.org/10.1111/mec.13475

    Article  CAS  PubMed  Google Scholar 

  6. Payne BAI, Wilson IJ, Yu-Wai-Man P et al (2013) Universal heteroplasmy of human mitochondrial DNA. Hum Mol Genet 22:384–390. https://doi.org/10.1093/hmg/dds435

    Article  CAS  PubMed  Google Scholar 

  7. Elliott HR, Samuels DC, Eden JA et al (2008) Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 83:254–260. https://doi.org/10.1016/j.ajhg.2008.07.004

    Article  CAS  PubMed  Google Scholar 

  8. Gorman GS, Schaefer AM, Ng Y et al (2015) Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol 77:753–759. https://doi.org/10.1002/ana.24362

    Article  CAS  PubMed  Google Scholar 

  9. Sharpley MS, Marciniak C, Eckel-Mahan K et al (2012) Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 151:333–343. https://doi.org/10.1016/j.cell.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  10. Røyrvik EC, Burgstaller JP, Johnston IG (2016) mtDNA diversity in human populations highlights the merit of haplotype matching in gene therapies. Mol Hum Reprod 22:809–817. https://doi.org/10.1093/molehr/gaw062

    Article  CAS  PubMed  Google Scholar 

  11. Burgstaller JP, Schinogl P, Dinnyes A et al (2007) Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer. BMC Dev Biol 7:141. https://doi.org/10.1186/1471-213X-7-141

    Article  CAS  PubMed  Google Scholar 

  12. Ma H, Van Dyken C, Darby H et al (2020) Germline transmission of donor, maternal and paternal mtDNA in primates. Hum Reprod 36:493–505. https://doi.org/10.1093/humrep/deaa308

    Article  CAS  Google Scholar 

  13. John S (2019) Genomic balance: two genomes establishing synchrony to modulate cellular fate and function. Cell 8:1306. https://doi.org/10.3390/cells8111306

    Article  CAS  Google Scholar 

  14. Eyre-walker A (2017) Mitochondrial replacement therapy: are mito-nuclear interactions likely to be a problem? Genetics 205:1365–1372. https://doi.org/10.1534/genetics.116.196436/-/DC1.1

    Article  PubMed  Google Scholar 

  15. Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond Ser B Biol Sci 370:20140330. https://doi.org/10.1098/rstb.2014.0330

    Article  CAS  Google Scholar 

  16. Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20:745–754. https://doi.org/10.1038/s41556-018-0124-1

    Article  CAS  PubMed  Google Scholar 

  17. Gordaliza-Alaguero I, Cantó C, Zorzano A (2019) Metabolic implications of organelle–mitochondria communication. EMBO Rep 20:e47928. https://doi.org/10.15252/embr.201947928

    Article  CAS  PubMed  Google Scholar 

  18. Chan DC (2020) Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol: Mech Dis 15:235–259. https://doi.org/10.1146/annurev-pathmechdis-012419-032711

    Article  CAS  Google Scholar 

  19. Desai R, East DA, Hardy L et al (2020) Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci Adv 6:eabc9955. https://doi.org/10.1126/sciadv.abc9955

    Article  CAS  PubMed  Google Scholar 

  20. Giacomello M, Pyakurel A, Glytsou C, Scorrano L (2020) The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 21:204–224. https://doi.org/10.1038/s41580-020-0210-7

    Article  CAS  PubMed  Google Scholar 

  21. Sebastián D, Palacín M, Zorzano A (2017) Mitochondrial dynamics: coupling mitochondrial fitness with healthy aging. Trends Mol Med 23:201–215. https://doi.org/10.1016/j.molmed.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  22. Jansen RP, de Boer K (1998) The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol 145:81–88. https://doi.org/10.1016/s0303-7207(98)00173-7

    Article  CAS  PubMed  Google Scholar 

  23. Cao L, Shitara H, Horii T et al (2007) The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet 39:386–390. https://doi.org/10.1038/ng1970

    Article  CAS  PubMed  Google Scholar 

  24. Motta PM, Nottola SA, Makabe S, Heyn R (2000) Mitochondrial morphology in human fetal and adult female germ cells. Hum Reprod 15(Suppl 2):129–147. https://doi.org/10.1093/humrep/15.suppl_2.129

    Article  PubMed  Google Scholar 

  25. Wassarman PM, Josefowicz WJ (1978) Oocyte development in the mouse: an ultrastructural comparison of oocytes isolated at various stages of growth and meiotic competence. J Morphol 156:209–235. https://doi.org/10.1002/jmor.1051560206

    Article  CAS  PubMed  Google Scholar 

  26. Udagawa O, Ishihara T, Maeda M et al (2014) Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles. Curr Biol 24:2451–2458. https://doi.org/10.1016/j.cub.2014.08.060

    Article  CAS  PubMed  Google Scholar 

  27. Wakai T, Harada Y, Miyado K, Kono T (2014) Mitochondrial dynamics controlled by mitofusins define organelle positioning and movement during mouse oocyte maturation. Mol Hum Reprod 20:1090–1100. https://doi.org/10.1093/molehr/gau064

    Article  CAS  PubMed  Google Scholar 

  28. Carvalho KF, Machado TS, Garcia BM et al (2020) Mitofusin 1 is required for oocyte growth and communication with follicular somatic cells. FASEB J 34:7644–7660. https://doi.org/10.1096/fj.201901761R

    Article  CAS  PubMed  Google Scholar 

  29. Chen Z, Wang ZH, Zhang G et al (2020) Mitochondrial DNA segregation and replication restrict the transmission of detrimental mutation. J Cell Biol 219:e201905160. https://doi.org/10.1083/JCB.201905160

    Article  PubMed  Google Scholar 

  30. Johnson MT, Freeman EA, Gardner DK, Hunt PA (2007) Oxidative metabolism of pyruvate is required for meiotic maturation of murine oocytes in vivo. Biol Reprod 77:2–8. https://doi.org/10.1095/biolreprod.106.059899

    Article  CAS  PubMed  Google Scholar 

  31. Su Y-Q, Sugiura K, Wigglesworth K et al (2007) Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 135:111–121. https://doi.org/10.1242/dev.009068

    Article  CAS  PubMed  Google Scholar 

  32. Su Y-Q, Sugiura K, Eppig JJ (2009) Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med 27:32–42. https://doi.org/10.1055/s-0028-1108008

    Article  CAS  PubMed  Google Scholar 

  33. Son MJ, Kwon Y, Son M-Y et al (2015) Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency. Cell Death Differ 22:1957–1969. https://doi.org/10.1038/cdd.2015.43

    Article  CAS  PubMed  Google Scholar 

  34. Prigione A, Rohwer N, Hoffmann S et al (2014) HIF1 alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells 32:364–376. https://doi.org/10.1002/stem.1552

    Article  CAS  PubMed  Google Scholar 

  35. Chen H, Chan DC (2017) Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab 26:39–48. https://doi.org/10.1016/j.cmet.2017.05.016

    Article  CAS  PubMed  Google Scholar 

  36. Chiaratti MR, Garcia BM, Carvalho KF et al (2018) The role of mitochondria in the female germline: implications to fertility and inheritance of mitochondrial diseases. Cell Biol Int 42:711. https://doi.org/10.1002/cbin.10947

    Article  CAS  PubMed  Google Scholar 

  37. Cho YM, Kwon S, Pak YK et al (2006) Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348:1472–1478. https://doi.org/10.1016/j.bbrc.2006.08.020

    Article  CAS  PubMed  Google Scholar 

  38. Ma H, Folmes CDL, Wu J et al (2015) Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature 524:234–238. https://doi.org/10.1038/nature14546

    Article  CAS  PubMed  Google Scholar 

  39. Chiaratti MR, Meirelles FV (2010) Mitochondrial DNA copy number, a marker of viability for oocytes. Biol Reprod 83:1–2. https://doi.org/10.1095/biolreprod.110.084269

    Article  CAS  PubMed  Google Scholar 

  40. Wai T, Ao A, Zhang X et al (2010) The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod 83:52–62. https://doi.org/10.1095/biolreprod.109.080887

    Article  CAS  PubMed  Google Scholar 

  41. Stewart JB, Chinnery PF (2020) Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat Rev Genet 22:106–118. https://doi.org/10.1038/s41576-020-00284-x

    Article  CAS  PubMed  Google Scholar 

  42. Lieber T, Jeedigunta SP, Palozzi JM et al (2019) Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature 570:380–384. https://doi.org/10.1038/s41586-019-1213-4

    Article  CAS  PubMed  Google Scholar 

  43. Kowald A, Kirkwood TBL (2011) Evolution of the mitochondrial fusion-fission cycle and its role in aging. Proc Natl Acad Sci U S A 108:10237–10242. https://doi.org/10.1073/pnas.1101604108

    Article  PubMed  Google Scholar 

  44. Russell OM, Gorman GS, Lightowlers RN, Turnbull DM (2020) Mitochondrial diseases: hope for the future. Cell 181:168–188. https://doi.org/10.1016/j.cell.2020.02.051

    Article  CAS  PubMed  Google Scholar 

  45. Miller B, Kim SJ, Kumagai H et al (2020) Peptides derived from small mitochondrial open reading frames: genomic, biological, and therapeutic implications. Exp Cell Res 393:112056. https://doi.org/10.1016/j.yexcr.2020.112056

    Article  CAS  PubMed  Google Scholar 

  46. Pozzi A, Dowling DK, Sloan D (2019) The genomic origins of small mitochondrial RNAs: are they transcribed by the mitochondrial DNA or by mitochondrial pseudogenes within the nucleus (NUMTs)? Genome Biol Evol 11:1883–1896. https://doi.org/10.1093/gbe/evz132

    Article  CAS  PubMed  Google Scholar 

  47. Rath S, Sharma R, Gupta R et al (2020) MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res 49:D1541–D1547. https://doi.org/10.1093/nar/gkaa1011

    Article  CAS  Google Scholar 

  48. Quirós PM, Mottis A, Auwerx J (2016) Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 17:213–226. https://doi.org/10.1038/nrm.2016.23

    Article  CAS  PubMed  Google Scholar 

  49. Milenkovic D, Matic S, Kühl I et al (2013) Twinkle is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication. Hum Mol Genet 22:1983–1993. https://doi.org/10.1093/hmg/ddt051

    Article  CAS  PubMed  Google Scholar 

  50. Gustafsson CM, Falkenberg M, Larsson NG (2016) Maintenance and expression of mammalian mitochondrial DNA. Annu Rev Biochem 85:133–160. https://doi.org/10.1146/annurev-biochem-060815-014402

    Article  CAS  PubMed  Google Scholar 

  51. Larsson NG, Wang J, Wilhelmsson H et al (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236. https://doi.org/10.1038/ng0398-231

    Article  CAS  PubMed  Google Scholar 

  52. Agaronyan K, Morozov YI, Anikin M, Temiakov D (2015) Replication-transcription switch in human mitochondria. Science 347:548–551. https://doi.org/10.1126/science.aaa0986

    Article  CAS  PubMed  Google Scholar 

  53. Ojala D, Montoya J, Attardi G (1981) TRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474. https://doi.org/10.1038/290470a0

    Article  CAS  PubMed  Google Scholar 

  54. Morozov YI, Agaronyan K, Cheung ACM et al (2014) A novel intermediate in transcription initiation by human mitochondrial RNA polymerase. Nucleic Acids Res 42:1365–1372. https://doi.org/10.1093/nar/gkt1356

    Article  CAS  Google Scholar 

  55. Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28:693–705

    Article  CAS  PubMed  Google Scholar 

  56. Kang E, Wu J, Gutierrez NM et al (2016) Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature 540:270–275. https://doi.org/10.1038/nature20592

    Article  CAS  PubMed  Google Scholar 

  57. Wolf DP, Hayama T, Mitalipov S (2017) Mitochondrial genome inheritance and replacement in the human germline. EMBO J 36:2177–2181. https://doi.org/10.15252/embj.201797606

    Article  CAS  PubMed  Google Scholar 

  58. Jemt E, Persson Ö, Shi Y et al (2015) Regulation of DNA replication at the end of the mitochondrial D-loop involves the helicase TWINKLE and a conserved sequence element. Nucleic Acids Res 43:9262–9275. https://doi.org/10.1093/nar/gkv804

    Article  CAS  PubMed  Google Scholar 

  59. Doda JN, Wright CT, Clayton DA (1981) Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. Proc Natl Acad Sci U S A 78:6116–6120. https://doi.org/10.1073/pnas.78.10.6116

    Article  CAS  PubMed  Google Scholar 

  60. Brown TA, Clayton DA (2002) Release of replication termination controls mitochondrial DNA copy number after depletion with 2′,3′-dideoxycytidine. Nucleic Acids Res 30:2004–2010. https://doi.org/10.1093/nar/30.9.2004

    Article  CAS  PubMed  Google Scholar 

  61. Holt AG, Davies AM (2020) The significance of mitochondrial DNA half-life to the lifespan of post-mitotic cells. bioRxiv:1–27. https://doi.org/10.1101/2020.02.15.950410

  62. Burgstaller JP, Johnston IG, Jones NS et al (2014) MtDNA segregation in heteroplasmic tissues is common in vivo and modulated by haplotype differences and developmental stage. Cell Rep 7:2031–2041. https://doi.org/10.1016/j.celrep.2014.05.020

    Article  CAS  PubMed  Google Scholar 

  63. Krasich R, Copeland WC (2017) DNA polymerases in the mitochondria: a critical review of the evidence. Front Biosci Landmark 22:692–709. https://doi.org/10.2741/4510

    Article  CAS  Google Scholar 

  64. Whitehall JC, Greaves LC (2020) Aberrant mitochondrial function in ageing and cancer. Biogerontology 21:445–459. https://doi.org/10.1007/s10522-019-09853-y

    Article  CAS  PubMed  Google Scholar 

  65. Rishishwar L, Jordan IK (2017) Implications of human evolution and admixture for mitochondrial replacement therapy. BMC Genomics 18:140. https://doi.org/10.1186/s12864-017-3539-3

    Article  CAS  PubMed  Google Scholar 

  66. Wei W, Tuna S, Keogh MJ et al (2019) Germline selection shapes human mitochondrial DNA diversity. Science 364:eaau6520. https://doi.org/10.1126/science.aau6520

    Article  CAS  PubMed  Google Scholar 

  67. Miao YW, Peng MS, Wu GS et al (2013) Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity 110:277–282. https://doi.org/10.1038/hdy.2012.83

    Article  CAS  PubMed  Google Scholar 

  68. Wallace DC, Chalkia D (2013) Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol 5:a021220. https://doi.org/10.1101/cshperspect.a021220

    Article  CAS  PubMed  Google Scholar 

  69. Meadows JRS, Hiendleder S, Kijas JW (2011) Haplogroup relationships between domestic and wild sheep resolved using a mitogenome panel. Heredity 106:700–706. https://doi.org/10.1038/hdy.2010.122

    Article  CAS  PubMed  Google Scholar 

  70. Achilli A, Olivieri A, Soares P et al (2012) Mitochondrial genomes from modern horses reveal the major haplogroups that underwent domestication. Proc Natl Acad Sci U S A 109:2449–2454. https://doi.org/10.1073/pnas.1111637109

    Article  PubMed  Google Scholar 

  71. Achilli A, Bonfiglio S, Olivieri A et al (2009) The multifaceted origin of taurine cattle reflected by the mitochondrial genome. PLoS One 4. https://doi.org/10.1371/journal.pone.0005753

  72. Wu GS, Yao YG, Qu KX et al (2007) Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple domestication events in East Asia. Genome Biol 8. https://doi.org/10.1186/gb-2007-8-11-r245

  73. Hiendleder S, Schmutz SM, Erhardt G et al (1999) Transmitochondrial differences and varying levels of heteroplasmy in nuclear transfer cloned cattle. Mol Reprod Dev 54:24–31. https://doi.org/10.1002/(SICI)1098-2795(199909)54:1<24::AID-MRD4>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  74. Hiendleder S, Mainz K, Plante Y, Lewalski H (1998) Analysis of mitochondrial DNA indicates that domestic sheep are derived from two different ancestral maternal sources: no evidence for contributions from urial and argali sheep. J Hered 89:113–120. https://doi.org/10.1093/jhered/89.2.113

    Article  CAS  PubMed  Google Scholar 

  75. Naderi S, Rezaei HR, Taberlet P et al (2007) Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity. PLoS One 2:e1012. https://doi.org/10.1371/journal.pone.0001012

    Article  CAS  PubMed  Google Scholar 

  76. Yonekawa H, Moriwaki K, Gotoh O et al (1982) Origins of laboratory mice deduced from restriction patterns of mitochondrial DNA. Differentiation 22:222–226. https://doi.org/10.1111/j.1432-0436.1982.tb01255.x

    Article  CAS  PubMed  Google Scholar 

  77. Lei L, Spradling AC (2016) Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells. Science 352:95–99. https://doi.org/10.1126/science.aad2156

    Article  CAS  PubMed  Google Scholar 

  78. Chinnery PF, Samuels DC (1999) Relaxed replication of mtDNA: a model with implications for the expression of disease. Am J Hum Genet 64:1158–1165. https://doi.org/10.1086/302311

    Article  CAS  PubMed  Google Scholar 

  79. Diaz F, Bayona-Bafaluy MP, Rana M et al (2002) Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control. Nucleic Acids Res 30:4626–4633. https://doi.org/10.1093/nar/gkf602

    Article  CAS  PubMed  Google Scholar 

  80. Davis AF, Clayton DA (1996) In situ localization of mitochondrial DNA replication in intact mammalian cells. J Cell Biol 135:883–893. https://doi.org/10.1083/jcb.135.4.883

    Article  CAS  PubMed  Google Scholar 

  81. Johnston IG, Burgstaller JP, Havlicek V et al (2015) Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism. eLife 4:e07464. https://doi.org/10.7554/eLife.07464

    Article  CAS  PubMed  Google Scholar 

  82. Cree LM, Samuels DC, de Sousa Lopes SC et al (2008) A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat Genet 40:249–254. https://doi.org/10.1038/ng.2007.63

    Article  CAS  PubMed  Google Scholar 

  83. Wai T, Teoli D, Shoubridge EA (2008) The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 40:1484–1488. https://doi.org/10.1038/ng.258

    Article  CAS  PubMed  Google Scholar 

  84. Stewart JB, Freyer C, Elson JL et al (2008) Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol 6:e10. https://doi.org/10.1371/journal.pbio.0060010

    Article  CAS  PubMed  Google Scholar 

  85. Hill JH, Chen Z, Xu H (2014) Selective propagation of functional mitochondrial DNA during oogenesis restricts the transmission of a deleterious mitochondrial variant. Nat Genet 46:389–392. https://doi.org/10.1038/ng.2920

    Article  CAS  PubMed  Google Scholar 

  86. Zhang Y, Wang ZH, Liu Y et al (2019) PINK1 inhibits local protein synthesis to limit transmission of deleterious mitochondrial DNA mutations. Mol Cell 73:1127–1137.e5. https://doi.org/10.1016/j.molcel.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  87. Floros VI, Pyle A, Dietmann S et al (2018) Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat Cell Biol 20:144–151. https://doi.org/10.1038/s41556-017-0017-8

    Article  CAS  PubMed  Google Scholar 

  88. Fan W, Waymire KG, Narula N et al (2008) A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319:958–962. https://doi.org/10.1126/science.1147786

    Article  CAS  PubMed  Google Scholar 

  89. Zaidi AA, Wilton PR, Su MSW et al (2019) Bottleneck and selection in the germline and maternal age influence transmission of mitochondrial DNA in human pedigrees. Proc Natl Acad Sci U S A 116:25172–25178. https://doi.org/10.1073/pnas.1906331116

    Article  CAS  PubMed  Google Scholar 

  90. Olivo PD, Van de Walle MJ, Laipis PJ, Hauswirth WW (1983) Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop. Nature 306:400–402. https://doi.org/10.1038/306400a0

    Article  CAS  PubMed  Google Scholar 

  91. Cox RT, Spradling AC (2006) Milton controls the early acquisition of mitochondria by drosophila oocytes. Development 133:3371–3377. https://doi.org/10.1242/dev.02514

    Article  CAS  PubMed  Google Scholar 

  92. Cox RT (2003) A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 130:1579–1590. https://doi.org/10.1242/dev.00365

    Article  CAS  PubMed  Google Scholar 

  93. Ashley MV, Laipis PJ, Hauswirth WW (1989) Rapid segregation of heteroplasmic bovine mitochondria. Nucleic Acids Res 17:7325–7331. https://doi.org/10.1093/nar/17.18.7325

    Article  CAS  PubMed  Google Scholar 

  94. Hauswirth WW, Laipis PJ (1982) Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci U S A 79:4686–4690. https://doi.org/10.1073/pnas.79.15.4686

    Article  CAS  PubMed  Google Scholar 

  95. Koehler CM, Lindberg GL, Brown DR et al (1991) Replacement of bovine mitochondrial DNA by a sequence variant within one generation. Genetics 129:247–255

    Article  CAS  PubMed  Google Scholar 

  96. Jenuth J, Peterson A, Fu K, Shoubridge E (1996) Random genetic drift in the female germline explains the rapid segregations of mammalian mitochondrial DNA. Nat Genet 14:146–151. https://doi.org/10.1038/ng1096-146

    Article  CAS  PubMed  Google Scholar 

  97. Rebolledo-Jaramillo B, Su MS-W, Stoler N et al (2014) Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A 111:15474–15479. https://doi.org/10.1073/pnas.1409328111

    Article  CAS  PubMed  Google Scholar 

  98. Burgstaller JP, Kolbe T, Havlicek V et al (2018) Large-scale genetic analysis reveals mammalian mtDNA heteroplasmy dynamics and variance increase through lifetimes and generations. Nat Commun 9:2488. https://doi.org/10.1038/s41467-018-04797-2

    Article  CAS  PubMed  Google Scholar 

  99. Meirelles FV, Smith LC (1997) Mitochondrial genotype segregation in a mouse heteroplasmic lineage produced by embryonic karyoplast transplantation. Genetics 145:445–451

    Article  CAS  PubMed  Google Scholar 

  100. Lee H-S, Ma H, Juanes RC et al (2012) Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cell Rep 1:506–515. https://doi.org/10.1016/j.celrep.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  101. Hämäläinen RRH, Manninen T, Koivumäki H et al (2013) Tissue-and cell-type–specific manifestations of heteroplasmic mtDNA 3243A> G mutation in human induced pluripotent stem cell-derived disease model. Proc Natl Acad Sci U S A 110:E3622–E3630. https://doi.org/10.1073/pnas.1311660110

    Article  PubMed  Google Scholar 

  102. Fujikura J, Nakao K, Sone M et al (2012) Induced pluripotent stem cells generated from diabetic patients with mitochondrial DNA A3243G mutation. Diabetologia 55:1689–1698. https://doi.org/10.1007/s00125-012-2508-2

    Article  CAS  PubMed  Google Scholar 

  103. Rand DM (2008) Mitigating mutational meltdown in mammalian mitochondria. PLoS Biol 6:e35. https://doi.org/10.1371/journal.pbio.0060035

    Article  CAS  PubMed  Google Scholar 

  104. Freyer C, Cree LM, Mourier A et al (2012) Variation in germline mtDNA heteroplasmy is determined prenatally but modified during subsequent transmission. Nat Genet 44:1282–1285. https://doi.org/10.1038/ng.2427

    Article  CAS  PubMed  Google Scholar 

  105. Folmes CDL, Martinez-Fernandez A, Perales-Clemente E et al (2013) Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a MELAS patient. Stem Cells 31:1298–1308. https://doi.org/10.1002/stem.1389

    Article  CAS  PubMed  Google Scholar 

  106. Latorre-Pellicer A, Lechuga-Vieco AV, Johnston IG et al (2019) Regulation of mother-to-offspring transmission of mtDNA heteroplasmy. Cell Metab 30:1120–1130.e5. https://doi.org/10.1016/j.cmet.2019.09.007

    Article  CAS  PubMed  Google Scholar 

  107. Ma H, Xu H, O’Farrell PH (2014) Transmission of mitochondrial mutations and action of purifying selection in Drosophila melanogaster. Nat Genet 46:393–397. https://doi.org/10.1038/ng.2919

    Article  CAS  PubMed  Google Scholar 

  108. Cherry ABC, Gagne KE, McLoughlin EM et al (2013) Induced pluripotent stem cells with a pathological mitochondrial DNA deletion. Stem Cells 31:1287–1297. https://doi.org/10.1002/stem.1354

    Article  CAS  PubMed  Google Scholar 

  109. Kauppila JHK, Baines HL, Bratic A et al (2016) A phenotype-driven approach to generate mouse models with pathogenic mtDNA mutations causing mitochondrial disease. Cell Rep 16:2980–2990. https://doi.org/10.1016/j.celrep.2016.08.037

    Article  CAS  PubMed  Google Scholar 

  110. Ma H, O’Farrell PH (2016) Selfish drive can trump function when animal mitochondrial genomes compete. Nat Genet 48:798–802. https://doi.org/10.1038/ng.3587

    Article  CAS  PubMed  Google Scholar 

  111. Gitschlag BL, Kirby CS, Samuels DC et al (2016) Homeostatic responses regulate selfish mitochondrial genome dynamics in C. elegans. Cell Metab 24:91–103. https://doi.org/10.1016/j.cmet.2016.06.008

    Article  CAS  PubMed  Google Scholar 

  112. Phillips WS, Coleman-Hulbert AL, Weiss ES et al (2015) Selfish mitochondrial DNA proliferates and diversifies in small, but not large, experimental populations of Caenorhabditis briggsae. Genome Biol Evol 7:2023–2037. https://doi.org/10.1093/gbe/evv116

    Article  CAS  PubMed  Google Scholar 

  113. Kang E, Wu G, Ma H et al (2014) Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos. Nature 509:101–104. https://doi.org/10.1038/nature13134

    Article  CAS  PubMed  Google Scholar 

  114. Klucnika A, Ma H (2019) A battle for transmission: the cooperative and selfish animal mitochondrial genomes. Open Biol 9:180267. https://doi.org/10.1098/rsob.180267

    Article  CAS  PubMed  Google Scholar 

  115. Samuels DC, Li C, Li B et al (2013) Recurrent tissue-specific mtDNA mutations are common in humans. PLoS Genet 9:e1003929. https://doi.org/10.1371/journal.pgen.1003929

    Article  CAS  PubMed  Google Scholar 

  116. Zhang Y, Chen Y, Gucek M, Xu H (2016) The mitochondrial outer membrane protein MDI promotes local protein synthesis and mt DNA replication. EMBO J 35:1045–1057. https://doi.org/10.15252/embj.201592994

    Article  CAS  PubMed  Google Scholar 

  117. Pickles S, Vigié P, Youle RJ (2018) Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 28:R170–R185. https://doi.org/10.1016/j.cub.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  118. Lima A, Lubatti G, Burgstaller J et al (2020) Differences in mitochondrial activity trigger cell competition during early mouse development. bioRxiv. https://doi.org/10.1101/2020.01.15.900613

  119. Lewis SC, Uchiyama LF, Nunnari J (2016) ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353:aaf5549. https://doi.org/10.1126/science.aaf5549

    Article  CAS  PubMed  Google Scholar 

  120. Prigione A, Fauler B, Lurz R et al (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28:721–733. https://doi.org/10.1002/stem.404

    Article  CAS  PubMed  Google Scholar 

  121. Chung YG, Eum JH, Lee JE et al (2014) Human somatic cell nuclear transfer using adult cells. Cell Stem Cell 14:777–780. https://doi.org/10.1016/j.stem.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  122. Tachibana M, Amato P, Sparman M et al (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153:1228–1238. https://doi.org/10.1016/j.cell.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  123. Burgstaller JP, Johnston IG, Poulton J (2015) Mitochondrial DNA disease and developmental implications for reproductive strategies. Mol Hum Reprod 21:11–22. https://doi.org/10.1093/molehr/gau090

    Article  CAS  PubMed  Google Scholar 

  124. Steinborn R, Schinogl P, Wells DN et al (2002) Coexistence of Bos taurus and B. indicus mitochondrial DNAs in nuclear transfer-derived somatic cattle clones. Genetics 162:823–829

    Article  CAS  PubMed  Google Scholar 

  125. Steinborn R, Schinogl P, Zakhartchenko V et al (2000) Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning. Nat Genet 25:255–257. https://doi.org/10.1038/77000

    Article  CAS  PubMed  Google Scholar 

  126. Meirelles FV, Bordignon V, Watanabe Y et al (2001) Complete replacement of the mitochondrial genotype in a Bos indicus calf reconstructed by nuclear transfer to a Bos taurus oocyte. Genetics 158:351–356

    Article  CAS  PubMed  Google Scholar 

  127. Evans MJ, Gurer C, Loike JD et al (1999) Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nat Genet 23:90–93. https://doi.org/10.1038/12696

    Article  CAS  PubMed  Google Scholar 

  128. Liu Z, Cai Y, Wang Y et al (2018) Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 172:881–887.e7. https://doi.org/10.1016/j.cell.2018.01.020

    Article  CAS  PubMed  Google Scholar 

  129. Hiendleder S, Zakhartchenko V, Wenigerkind H et al (2003) Heteroplasmy in bovine fetuses produced by intra- and inter-subspecific somatic cell nuclear transfer: neutral segregation of nuclear donor mitochondrial DNA in various tissues and evidence for recipient cow mitochondria in fetal blood. Biol Reprod 68:159–166. https://doi.org/10.1095/biolreprod.102.008201

    Article  CAS  PubMed  Google Scholar 

  130. Takeda K, Tasai M, Iwamoto M et al (2006) Transmission of mitochondrial DNA in pigs and progeny derived from nuclear transfer of Meishan pig fibroblast cells. Mol Reprod Dev 73:306–312. https://doi.org/10.1002/mrd.20403

    Article  CAS  PubMed  Google Scholar 

  131. Takeda K, Kaneyama K, Tasai M et al (2008) Characterization of a donor mitochondrial DNA transmission bottleneck in nuclear transfer derived cow lineages. Mol Reprod Dev 75:759–765. https://doi.org/10.1002/mrd.20837

    Article  CAS  PubMed  Google Scholar 

  132. Takeda K, Akagi S, Kaneyama K et al (2003) Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bos taurus) derived from cumulus cells. Mol Reprod Dev 64:429–437. https://doi.org/10.1002/mrd.10279

    Article  CAS  PubMed  Google Scholar 

  133. Lechuga-Vieco AV, Latorre-Pellicer A, Johnston IG et al (2020) Cell identity and nucleo-mitochondrial genetic context modulate OXPHOS performance and determine somatic heteroplasmy dynamics. Sci Adv 6:eaba5345. https://doi.org/10.1126/sciadv.aba5345

    Article  CAS  PubMed  Google Scholar 

  134. Acton BM, Lai I, Shang X et al (2007) Neutral mitochondrial heteroplasmy alters physiological function in mice. Biol Reprod 77:569–576. https://doi.org/10.1095/biolreprod.107.060806

    Article  CAS  PubMed  Google Scholar 

  135. Roubertoux PL, Sluyter F, Carlier M et al (2003) Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat Genet 35:65–69. https://doi.org/10.1038/ng1230

    Article  CAS  PubMed  Google Scholar 

  136. Moreno-Loshuertos R, Acín-Pérez R, Fernández-Silva R et al (2006) Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat Genet 38:1261–1268. https://doi.org/10.1038/ng1897

    Article  CAS  PubMed  Google Scholar 

  137. Ma H, Marti Gutierrez N, Morey R et al (2016) Incompatibility between nuclear and mitochondrial genomes contributes to an interspecies reproductive barrier. Cell Metab 24:283–294. https://doi.org/10.1016/j.cmet.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  138. Steinborn R, Zakhartchenko V, Jelyazkov J et al (1998) Composition of parental mitochondrial DNA in cloned bovine embryos. FEBS Lett 426:352–356. https://doi.org/10.1016/s0014-5793(98)00350-0

    Article  CAS  PubMed  Google Scholar 

  139. Steinborn R, Zakhartchenko V, Wolf E et al (1998) Non-balanced mix of mitochondrial DNA in cloned cattle produced by cytoplast-blastomere fusion. FEBS Lett 426:357–361. https://doi.org/10.1016/s0014-5793(98)00351-2

    Article  CAS  PubMed  Google Scholar 

  140. Lloyd RE, Lee J-H, Alberio R et al (2006) Aberrant nucleo-cytoplasmic cross-talk results in donor cell mtDNA persistence in cloned embryos. Genetics 172:2515–2527. https://doi.org/10.1534/genetics.105.055145

    Article  CAS  PubMed  Google Scholar 

  141. Arbeithuber B, Hester J, Cremona MA et al (2020) Age-related accumulation of de novo mitochondrial mutations in mammalian oocytes and somatic tissues. PLoS Biol 18:e3000745. https://doi.org/10.1371/journal.pbio.3000745

    Article  CAS  PubMed  Google Scholar 

  142. del Mar González M, Ramos A, Aluja MP, Santos C (2020) Sensitivity of mitochondrial DNA heteroplasmy detection using Next Generation Sequencing. Mitochondrion 50:88–93. https://doi.org/10.1016/j.mito.2019.10.006

    Article  CAS  Google Scholar 

  143. Srirattana K, St. John JC (2017) Manipulating the mitochondrial genome to enhance cattle embryo development. G3: Genes, Genomes, Genet 7:2065–2080. https://doi.org/10.1534/g3.117.042655

    Article  CAS  Google Scholar 

  144. Lee JH, Peters A, Fisher P et al (2010) Generation of mtDNA homoplasmic cloned lambs. Cell Reprogram 12:347–355. https://doi.org/10.1089/cell.2009.0096

    Article  CAS  PubMed  Google Scholar 

  145. Min KK, Jang G, Hyun JO et al (2007) Endangered wolves cloned from adult somatic cells. Cloning Stem Cells 9:130–137. https://doi.org/10.1089/clo.2006.0034

    Article  CAS  Google Scholar 

  146. Srirattana K, Imsoonthornruksa S, Laowtammathron C et al (2012) Full-term development of gaur-bovine interspecies somatic cell nuclear transfer embryos: effect of trichostatin A treatment. Cell Reprogram 14:248–257. https://doi.org/10.1089/cell.2011.0099

    Article  CAS  PubMed  Google Scholar 

  147. Vogel G (2001) Endangered species. Cloned gaur a short-lived success. Science 291:409. https://doi.org/10.1126/science.291.5503.409a

    Article  CAS  PubMed  Google Scholar 

  148. Gómez MC, Pope CE, Giraldo A et al (2004) Birth of African Wildcat cloned kittens born from domestic cats. Cloning Stem Cells 6:247–258. https://doi.org/10.1089/clo.2004.6.247

    Article  PubMed  Google Scholar 

  149. Loi P, Ptak G, Barboni B et al (2001) Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat Biotechnol 19:962–964. https://doi.org/10.1038/nbt1001-962

    Article  CAS  PubMed  Google Scholar 

  150. Oh HJ, Kim MK, Jang G et al (2008) Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem. Theriogenology 70:638–647. https://doi.org/10.1016/j.theriogenology.2008.04.032

    Article  CAS  PubMed  Google Scholar 

  151. Lagutina I, Fulka H, Lazzari G, Galli C (2013) Interspecies somatic cell nuclear transfer: advancements and problems. Cell Reprogram 15:374–384. https://doi.org/10.1089/cell.2013.0036

    Article  CAS  PubMed  Google Scholar 

  152. Bayona-Bafaluy MP, Müller S, Moraes CT (2005) Fast adaptive coevolution of nuclear and mitochondrial subunits of ATP synthetase in orangutan. Mol Biol Evol 22:716–724. https://doi.org/10.1093/molbev/msi059

    Article  CAS  PubMed  Google Scholar 

  153. Dey R, Barrientos A, Moraes CT (2000) Functional constraints of nuclear mitochondrial DNA interactions in xenomitochondrial rodent cell lines. J Biol Chem 275:31520–31527. https://doi.org/10.1074/jbc.M004053200

    Article  CAS  PubMed  Google Scholar 

  154. Yu G, Tian J, Yin J et al (2014) Incompatibility of nucleus and mitochondria causes xenomitochondrial cybrid unviable across human, mouse, and pig cells. Anim Biotechnol 25:139–149. https://doi.org/10.1080/10495398.2013.841709

    Article  PubMed  Google Scholar 

  155. Thongphakdee A, Kobayashi S, Imai K et al (2008) Interspecies nuclear transfer embryos reconstructed from cat somatic cells and bovine ooplasm. J Reprod Dev 54:142–147. https://doi.org/10.1262/jrd.19159

    Article  CAS  PubMed  Google Scholar 

  156. Kitiyanant Y, Saikhun J, Chaisalee B et al (2001) Somatic cell cloning in Buffalo (Bubalus bubalis): effects of interspecies cytoplasmic recipients and activation procedures. Cloning Stem Cells 3:97–104. https://doi.org/10.1089/153623001753205052

    Article  CAS  PubMed  Google Scholar 

  157. Chen D-Y, Wen D-C, Zhang Y-P et al (2002) Interspecies implantation and mitochondria fate of panda-rabbit cloned embryos. Biol Reprod 67:637–642. https://doi.org/10.1095/biolreprod67.2.637

    Article  CAS  PubMed  Google Scholar 

  158. Yang CX, Han ZM, Wen DC et al (2003) In vitro development and mitochondrial fate of macaca – rabbit cloned embryos. Mol Reprod Dev 65:396–401. https://doi.org/10.1002/mrd.10320

    Article  CAS  PubMed  Google Scholar 

  159. Yang CX, Kou ZH, Wang K et al (2004) Quantitative analysis of mitochondrial DNAs in macaque embryos reprogrammed by rabbit oocytes. Reproduction 127:201–205. https://doi.org/10.1530/rep.1.00088

    Article  CAS  PubMed  Google Scholar 

  160. Chen Y, He ZX, Liu A et al (2003) Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes. Cell Res 13:251–263. https://doi.org/10.1038/sj.cr.7290170

    Article  PubMed  Google Scholar 

  161. Hua S, Zhang Y, Li X-C et al (2007) Effects of granulosa cell mitochondria transfer on the early development of bovine embryos in vitro. Cloning Stem Cells 9:237–246. https://doi.org/10.1089/clo.2006.0020

    Article  CAS  PubMed  Google Scholar 

  162. Chang KH, Lim JM, Kang SK et al (2003) Blastocyst formation, karyotype, and mitochondrial DNA of interspecies embryos derived from nuclear transfer of human cord fibroblasts into enucleated bovine oocytes. Fertil Steril 80:1380–1387. https://doi.org/10.1016/j.fertnstert.2003.07.006

    Article  PubMed  Google Scholar 

  163. Mastromonaco GF, Favetta LA, Smith LC et al (2007) The influence of nuclear content on developmental competence of gaur × cattle hybrid in vitro fertilized and somatic cell nuclear transfer embryos. Biol Reprod 76:514–523. https://doi.org/10.1095/biolreprod.106.058040

    Article  CAS  PubMed  Google Scholar 

  164. Lanza RP, Cibelli JB, Diaz F et al (2000) Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2:79–90. https://doi.org/10.1089/152045500436104

    Article  CAS  PubMed  Google Scholar 

  165. Sansinena MJ, Lynn J, Bondioli KR et al (2011) Ooplasm transfer and interspecies somatic cell nuclear transfer: heteroplasmy, pattern of mitochondrial migration and effect on embryo development. Zygote 19:147–156. https://doi.org/10.1017/S0967199410000419

    Article  CAS  PubMed  Google Scholar 

  166. Imsoonthornruksa S, Srirattana K, Phewsoi W et al (2012) Segregation of donor cell mitochondrial DNA in gaur-bovine interspecies somatic cell nuclear transfer embryos, fetuses and an offspring. Mitochondrion 12:506–513. https://doi.org/10.1016/j.mito.2012.07.108

    Article  CAS  PubMed  Google Scholar 

  167. Jiang Y, Chen T, Wang K et al (2006) Different fates of donor mitochondrial DNA in bovine-rabbit and cloned bovine-rabbit reconstructed embryos during preimplantation development. Front Biosci J Virtual Libr 11:1425–1432. https://doi.org/10.2741/1893

    Article  CAS  Google Scholar 

  168. Poulton J, Steffann J, Burgstaller J, McFarland R (2019) 243rd ENMC international workshop: developing guidelines for management of reproductive options for families with maternally inherited mtDNA disease, Amsterdam, The Netherlands, 22–24 March 2019. Neuromuscul Disord 29:725–733. https://doi.org/10.1016/j.nmd.2019.08.004

    Article  PubMed  Google Scholar 

  169. Greenfield A, Braude P, Flinter F et al (2017) Assisted reproductive technologies to prevent human mitochondrial disease transmission. Nat Biotechnol 35:1059–1068. https://doi.org/10.1038/nbt.3997

    Article  CAS  PubMed  Google Scholar 

  170. Herbert M, Turnbull D (2018) Progress in mitochondrial replacement therapies. Nat Rev Mol Cell Biol 19:71–72. https://doi.org/10.1038/nrm.2018.3

    Article  CAS  PubMed  Google Scholar 

  171. Yamada M, Emmanuele V, Sanchez-Quintero MJ et al (2016) Genetic drift can compromise mitochondrial replacement by nuclear transfer in human oocytes. Cell Stem Cell 18:749–754. https://doi.org/10.1016/j.stem.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  172. Hyslop LA, Blakeley P, Craven L et al (2016) Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature 534:383–386. https://doi.org/10.1038/nature18303

    Article  CAS  PubMed  Google Scholar 

  173. Tachibana M, Amato P, Sparman M et al (2013) Towards germline gene therapy of inherited mitochondrial diseases. Nature 493:627–631. https://doi.org/10.1038/nature11647

    Article  CAS  PubMed  Google Scholar 

  174. Ma H, O’Neil RC, Marti Gutierrez N et al (2017) Functional human oocytes generated by transfer of polar body genomes. Cell Stem Cell 20:112–119. https://doi.org/10.1016/j.stem.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  175. Craven L, Tuppen HA, Greggains GD et al (2010) Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465:82–85. https://doi.org/10.1038/nature08958

    Article  CAS  PubMed  Google Scholar 

  176. Zhang J, Liu H, Luo S et al (2017) Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online 34:361–368. https://doi.org/10.1016/j.rbmo.2017.01.013

    Article  PubMed  Google Scholar 

  177. Mitalipov S, Amato P, Parry S, Falk MJ (2014) Limitations of preimplantation genetic diagnosis for mitochondrial DNA diseases. Cell Rep 7:935–937. https://doi.org/10.1016/j.celrep.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  178. Chinnery PF (2020) Mitochondrial replacement in the clinic. N Engl J Med 382:1855–1857. https://doi.org/10.1056/NEJMcibr2002015

    Article  PubMed  Google Scholar 

  179. Shock LS, Thakkar PV, Peterson EJ et al (2011) DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci U S A 108:3630–3635. https://doi.org/10.1073/pnas.1012311108

    Article  PubMed  Google Scholar 

  180. Bellizzi D, D’aquila P, Scafone T et al (2013) The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res 20:537–547. https://doi.org/10.1093/dnares/dst029

    Article  CAS  PubMed  Google Scholar 

  181. Dzitoyeva S, Chen H, Manev H (2012) Effect of aging on 5-hydroxymethylcytosine in brain mitochondria. Neurobiol Aging 33:2881–2891. https://doi.org/10.1016/j.neurobiolaging.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  182. Wong M, Gertz B, Chestnut BA, Martin LJ (2013) Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS. Front Cell Neurosci 7:279. https://doi.org/10.3389/fncel.2013.00279

    Article  CAS  PubMed  Google Scholar 

  183. Feng S, Xiong L, Ji Z et al (2012) Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer. Mol Med Rep 6:125–130. https://doi.org/10.3892/mmr.2012.870

    Article  CAS  PubMed  Google Scholar 

  184. Gao J, Wen S, Zhou H, Feng S (2015) De-methylation of displacement loop of mitochondrial DNA is associated with increased mitochondrial copy number and nicotinamide adenine dinucleotide subunit 2 expression in colorectal cancer. Mol Med Rep 12:7033–7038. https://doi.org/10.3892/mmr.2015.4256

    Article  CAS  PubMed  Google Scholar 

  185. Devall M, Smith RG, Jeffries A et al (2017) Regional differences in mitochondrial DNA methylation in human post-mortem brain tissue. Clin Epigenetics 9:1–15. https://doi.org/10.1186/s13148-017-0337-3

    Article  Google Scholar 

  186. Saini SK, Mangalhara KC, Prakasam G, Bamezai RNK (2017) DNA Methyltransferase1 (DNMT1) Isoform3 methylates mitochondrial genome and modulates its biology. Sci Rep 7:1525. https://doi.org/10.1038/s41598-017-01743-y

    Article  CAS  PubMed  Google Scholar 

  187. Van Der Wijst MGP, Van Tilburg AY, Ruiters MHJ, Rots MG (2017) Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression. Sci Rep 7:177. https://doi.org/10.1038/s41598-017-00263-z

    Article  CAS  PubMed  Google Scholar 

  188. Meirelles F, Smith L (1998) Mitochondrial genotype segregation during preimplantation development in mouse heteroplasmic embryos. Genetics 148:877–883

    Article  CAS  PubMed  Google Scholar 

  189. Ferreira CR, Meirelles FV, Yamazaki W et al (2007) The kinetics of donor cell mtDNA in embryonic and somatic donor cell-derived bovine embryos. Cloning Stem Cells 9:618–629. https://doi.org/10.1089/clo.2006.0082

    Article  CAS  PubMed  Google Scholar 

  190. Takeda K (2019) Functional consequences of mitochondrial mismatch in reconstituted embryos and offspring. J Reprod Dev 65:485–489. https://doi.org/10.1262/jrd.2019-089

    Article  CAS  PubMed  Google Scholar 

  191. Pinkert CA, Irwin MH, Johnson LW, Moffatt RJ (1997) Mitochondria transfer into mouse ova by microinjection. Transgenic Res 6:379–383. https://doi.org/10.1023/A:1018431316831

    Article  CAS  PubMed  Google Scholar 

  192. Ingraham CA, Pinkert CA (2003) Developmental fate of mitochondria microinjected into murine zygotes. Mitochondrion 3:39–46. https://doi.org/10.1016/S1567-7249(03)00075-8

    Article  CAS  PubMed  Google Scholar 

  193. Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13:589–598. https://doi.org/10.1038/ncb2220

    Article  CAS  PubMed  Google Scholar 

  194. Takeda K, Tasai M, Akagi S et al (2010) Microinjection of serum-starved mitochondria derived from somatic cells affects parthenogenetic development of bovine and murine oocytes. Mitochondrion 10:137–142. https://doi.org/10.1016/j.mito.2009.12.144

    Article  CAS  PubMed  Google Scholar 

  195. Takeda K, Akagi S, Takahashi S et al (2002) Mitochondrial activity in response to serum starvation in bovine (Bos taurus) cell culture. Cloning Stem Cells 4:223–229. https://doi.org/10.1089/15362300260339502

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos R. Chiaratti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Burgstaller, J.P., Chiaratti, M.R. (2023). Mitochondrial Inheritance Following Nuclear Transfer: From Cloned Animals to Patients with Mitochondrial Disease. In: Moura, M.T. (eds) Somatic Cell Nuclear Transfer Technology . Methods in Molecular Biology, vol 2647. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3064-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3064-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3063-1

  • Online ISBN: 978-1-0716-3064-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics