Skip to main content

Swimming Motility Assays of Spiroplasma

  • Protocol
  • First Online:
Bacterial and Archaeal Motility

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2646))

  • 547 Accesses

Abstract

Spiroplasma swim in liquids without the use of the bacterial flagella. This small helical bacterium propels itself by generating kinks that travel down the cell body. The kink translation is unidirectional, from the leading pole to the lagging pole, during cell swimming in viscous environments. This protocol describes a swimming motility assay of Spiroplasma eriocheiris for visualizing kink translations of the absolute handedness of the body helix with optical microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shaevitz JW, Lee JY, Fletcher DA (2005) Spiroplasma swim by a processive change in body helicity. Cell 122:941–945. https://doi.org/10.1016/j.cell.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  2. Miyata M, Robinson RC, Uyeda TQP et al (2020) Tree of motility – a proposed history of motility systems in the tree of life. Genes Cells 25:6–21. https://doi.org/10.1111/gtc.12737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sasajima Y, Miyata M (2021) Prospects for the mechanism of Spiroplasma swimming. Front Microbiol 12:706426. https://doi.org/10.3389/fmicb.2021.706426

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nakane D, Ito T, Nishizaka T (2020) Coexistence of two chiral helices produces kink translation in Spiroplasma swimming. J Bacteriol 202:e00735–e00719. https://doi.org/10.1128/JB.00735-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goldstein RE, Goriely A, Huber G et al (2000) Bistable helices. Phys Rev Lett 84:1631–1634. https://doi.org/10.1103/PhysRevLett.84.1631

    Article  CAS  PubMed  Google Scholar 

  6. Wolgemuth CW, Charon NW (2005) The kinky propulsion of Spiroplasma. Cell 122:827–828. https://doi.org/10.1016/j.cell.2005.09.003

    Article  CAS  PubMed  Google Scholar 

  7. Wada H, Netz RR (2007) Model for self-propulsive helical filaments: kink-pair propagation. Phys Rev Lett 99:108102. https://doi.org/10.1103/PhysRevLett.99.108102

    Article  CAS  PubMed  Google Scholar 

  8. Wada H, Netz RR (2009) Hydrodynamics of helical-shaped bacterial motility. Phys Rev E 80:021921. https://doi.org/10.1103/PhysRevE.80.021921

    Article  CAS  Google Scholar 

  9. Yang J, Wolgemuth CW, Huber G (2009) Kinematics of the swimming of Spiroplasma. Phys Rev Lett 102:218102. https://doi.org/10.1103/PhysRevLett.102.218102

    Article  CAS  PubMed  Google Scholar 

  10. Trachtenberg S, Gilad R (2001) A bacterial linear motor: cellular and molecular organization of the contractile cytoskeleton of the helical bacterium Spiroplasma melliferum BC3. Mol Microbiol 41:827–848. https://doi.org/10.1046/j.1365-2958.2001.02527.x

    Article  CAS  PubMed  Google Scholar 

  11. Kurner J, Frangakis AS, Baumeister W (2005) Cryo-electron tomography reveals the cytoskeletal structure of Spiroplasma melliferum. Science 307:436–438. https://doi.org/10.1126/science.1104031

    Article  CAS  PubMed  Google Scholar 

  12. Sasajima Y, Kato T, Miyata T et al (2022) Isolation and structure of fibril protein, a major component of the internal ribbon for Spiroplasma swimming. Front Microbiol 13:1004601. https://doi.org/10.3389/fmicb.2022.1004601

  13. Ku C, Lo W-S, Kuo C-H (2014) Molecular evolution of the actin-like MreB protein gene family in wall-less bacteria. Biochem Biophys Res Commun 446:927–932. https://doi.org/10.1016/j.bbrc.2014.03.039

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi D, Fujiwara I, Miyata M (2020) Phylogenetic origin and sequence features of MreB from the wall-less swimming bacteria Spiroplasma. Biochem Biophys Res Commun 533:638–644. https://doi.org/10.1016/j.bbrc.2020.09.060

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi D, Fujiwara I, Sasajima Y, et al (2022) Open Biol 12:220083. https://doi.org/10.1098/rsob.220083

  16. Harne S, Duret S, Pande V et al (2020) MreB5 is a determinant of rod-to-helical transition in the cell-wall-less bacterium Spiroplasma. Curr Biol 30:4753–4762.e4757. https://doi.org/10.1016/j.cub.2020.08.093

    Article  CAS  PubMed  Google Scholar 

  17. Masson F, Pierrat X, Lemaitre B et al (2021) The wall-less bacterium Spiroplasma poulsonii builds a polymeric cytoskeleton composed of interacting MreB isoforms. iScience 24:103458. https://doi.org/10.1016/j.isci.2021.103458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kiyama H, Kakizawa S, Sasajima Y et al (2022) Reconstitution of a minimal motility system based on Spiroplasma swimming by two bacterial actins in a synthetic minimal bacterium. Sci Adv 8:eabo7490. https://doi.org/10.1126/sciadv.abo7490

  19. Lartigue C, Lambert B, Rideau F et al (2022) Cytoskeletal components can turn wall-less spherical bacteria into kinking helices. Nat Commun 13:6930. https://doi.org/10.1038/s41467-022-34478-0

  20. Liu P, Zheng H, Meng Q et al (2017) Chemotaxis without conventional two-component system, based on cell polarity and aerobic conditions in helicity-switching swimming of Spiroplasma eriocheiris. Front Microbiol 8:58. https://doi.org/10.3389/fmicb.2017.00058

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang W, Gu W, Gasparich GE et al (2011) Spiroplasma eriocheiris sp. nov., associated with mortality in the Chinese mitten crab, Eriocheir sinensis. Int J Syst Evol Microbiol 61:703–708. https://doi.org/10.1099/ijs.0.020529-0

    Article  CAS  PubMed  Google Scholar 

  22. Manson MD, Tedesco P, Berg HC et al (1977) A protonmotive force drives bacterial flagella. Proc Natl Acad Sci U S A 74:3060–3064. https://doi.org/10.1073/pnas.74.7.3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shimada K, Kamiya R, Asakura S (1975) Left-handed to right-handed helix conversion in Salmonella flagella. Nature 254:332–334. https://doi.org/10.1038/254332a0

    Article  CAS  PubMed  Google Scholar 

  24. Boudet JF, Mathelié-Guinlet M, Vilquin A et al (2018) Large variability in the motility of spiroplasmas in media of different viscosities. Sci Rep 8:17138. https://doi.org/10.1038/s41598-018-35326-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koch M, Rohrbach A (2012) Object-adapted optical trapping and shape-tracking of energy-switching helical bacteria. Nat Photon 6:680. https://doi.org/10.1038/nphoton.2012.232

    Article  CAS  Google Scholar 

  26. Jori G, Fabris C, Soncin M et al (2006) Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med 38:468–481. https://doi.org/10.1002/lsm.20361

    Article  PubMed  Google Scholar 

  27. Dwyer DJ, Belenky PA, Yang JH et al (2014) Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci U S A 111:E2100–E2109. https://doi.org/10.1073/pnas.1401876111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roth J, Koch MD, Rohrbach A (2018) Dynamics of a protein chain motor driving helical bacteria under stress. Biophys J 114:1955–1969. https://doi.org/10.1016/j.bpj.2018.02.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by KAKENHI (16H06230, 20H05543, 21 K07020, 22H05066) to DN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Nakane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nakane, D. (2023). Swimming Motility Assays of Spiroplasma. In: Minamino, T., Miyata, M., Namba, K. (eds) Bacterial and Archaeal Motility. Methods in Molecular Biology, vol 2646. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3060-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3060-0_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3059-4

  • Online ISBN: 978-1-0716-3060-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics