Skip to main content

Generation and Characterization of an Isogenic Cell Line Model of Radioresistant Esophageal Adenocarcinoma

  • Protocol
  • First Online:
Cancer Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2645))

  • 657 Accesses

Abstract

Radiation therapy is a cornerstone of cancer treatment worldwide. Unfortunately, in many cases, it does not control tumor growth, and many tumors display treatment resistance. The molecular pathways leading to treatment resistance in cancer have been subject to research for many years. Isogenic cell lines with divergent radiosensitivities are an extremely useful tool to study the molecular mechanisms that underpin radioresistance in cancer research, as they reduce the genetic variation that is present in patient samples and cell lines of different origin, thus allowing the elucidation of molecular determinants of radioresponse. Here, we describe the process of generating an in vitro isogenic model of radioresistant esophageal adenocarcinoma by chronic irradiation of esophageal adenocarcinoma cells with clinically relevant doses of X-ray radiation. We also characterize cell cycle, apoptosis, reactive oxygen species (ROS) production, DNA damage and repair in this model to investigate the underlying molecular mechanisms of radioresistance in esophageal adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Domina EA, Philchenkov A, Dubrovska A (2018) Individual response to ionizing radiation and personalized radiotherapy. Crit Rev Oncog 23(1-2):69–92. https://doi.org/10.1615/CritRevOncog.2018026308

    Article  PubMed  Google Scholar 

  2. Lynam-Lennon N, Reynolds JV, Pidgeon GP, Lysaght J, Marignol L, Maher SG (2010) Alterations in DNA repair efficiency are involved in the radioresistance of esophageal adenocarcinoma. Radiat Res 174(6):703–711. https://doi.org/10.1667/rr2295.1

    Article  CAS  PubMed  Google Scholar 

  3. Fukuda K, Sakakura C, Miyagawa K, Kuriu Y, Kin S, Nakase Y et al (2004) Differential gene expression profiles of radioresistant oesophageal cancer cell lines established by continuous fractionated irradiation. Br J Cancer 91(8):1543–1550. https://doi.org/10.1038/sj.bjc.6602187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang L, Li S, Zhu X (2020) Construction of radiation surviving/resistant lung cancer cell lines with Equidifferent gradient dose irradiation. Dose-Response 18(4):1559325820982421. https://doi.org/10.1177/1559325820982421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Y, Li H, Peng W, He XY, Huang M, Qiu D et al (2015) DNA-dependent protein kinase catalytic subunit inhibitor reverses acquired radioresistance in lung adenocarcinoma by suppressing DNA repair. Mol Med Rep 12(1):1328–1334. https://doi.org/10.3892/mmr.2015.3505

    Article  CAS  PubMed  Google Scholar 

  6. Gray M, Turnbull AK, Ward C, Meehan J, Martínez-Pérez C, Bonello M et al (2019) Development and characterisation of acquired radioresistant breast cancer cell lines. Radiat Oncol (Lond, Engl) 14(1):64. https://doi.org/10.1186/s13014-019-1268-2

    Article  Google Scholar 

  7. Lee JU, Hosotani R, Wada M, Doi R, Kosiba T, Fujimoto K et al (1999) Role of Bcl-2 family proteins (Bax, Bcl-2 and Bcl-X) on cellular susceptibility to radiation in pancreatic cancer cells. Eur J Cancer (Oxf, Engl: 1990) 35(9):1374–1380. https://doi.org/10.1016/s0959-8049(99)00134-3

    Article  CAS  Google Scholar 

  8. McDermott N, Meunier A, Mooney B, Nortey G, Hernandez C, Hurley S et al (2016) Fractionated radiation exposure amplifies the radioresistant nature of prostate cancer cells. Sci Rep 6:34796. https://doi.org/10.1038/srep34796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–2319. https://doi.org/10.1038/nprot.2006.339

    Article  CAS  PubMed  Google Scholar 

  10. Pawlik TM, Keyomarsi K (2004) Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 59(4):928–942. https://doi.org/10.1016/j.ijrobp.2004.03.005

    Article  PubMed  Google Scholar 

  11. Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5(3):231–237. https://doi.org/10.1038/nrc1560

    Article  PubMed  Google Scholar 

  12. Meyn RE, Stephens LC, Milas L (1996) Programmed cell death and radioresistance. Cancer Metastasis Rev 15(1):119–131. https://doi.org/10.1007/bf00049491

    Article  CAS  PubMed  Google Scholar 

  13. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783. https://doi.org/10.1038/nature07733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Taneja N, Davis M, Choy JS, Beckett MA, Singh R, Kron SJ et al (2004) Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy. J Biol Chem 279(3):2273–2280. https://doi.org/10.1074/jbc.M310030200

    Article  CAS  PubMed  Google Scholar 

  15. Kuwahara Y, Li L, Baba T, Nakagawa H, Shimura T, Yamamoto Y et al (2009) Clinically relevant radioresistant cells efficiently repair DNA double-strand breaks induced by X-rays. Cancer Sci 100(4):747–752. https://doi.org/10.1111/j.1349-7006.2009.01082.x

    Article  CAS  PubMed  Google Scholar 

  16. Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F (1997) Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27(1):1–20

    Article  CAS  PubMed  Google Scholar 

  17. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184(1):39–51. https://doi.org/10.1016/0022-1759(95)00072-i

    Article  CAS  PubMed  Google Scholar 

  18. Radford IR (1985) The level of induced DNA double-strand breakage correlates with cell killing after X-irradiation. Int J Radiat Biol Relat Stud Phys Chem Med 48(1):45–54. https://doi.org/10.1080/09553008514551051

    Article  CAS  PubMed  Google Scholar 

  19. Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC et al (2002) DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol 4(12):993–997. https://doi.org/10.1038/ncb884

    Article  CAS  PubMed  Google Scholar 

  20. Banáth JP, Klokov D, MacPhail SH, Banuelos CA, Olive PL (2010) Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC Cancer 10:4. https://doi.org/10.1186/1471-2407-10-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

A.C. and N.L.L. are supported by the Health Research Board, grant numbers ILP-POR-2017-007 and EIA-2017-020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niamh Lynam-Lennon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cannon, A., Maher, S.G., Lynam-Lennon, N. (2023). Generation and Characterization of an Isogenic Cell Line Model of Radioresistant Esophageal Adenocarcinoma. In: Movia, D., Prina-Mello, A. (eds) Cancer Cell Culture. Methods in Molecular Biology, vol 2645. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3056-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3056-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3055-6

  • Online ISBN: 978-1-0716-3056-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics