Skip to main content

Disease Animal Models for Cancer Research

  • Protocol
  • First Online:
Cancer Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2645))

Abstract

Despite nonanimal methods (NAMs) are more and more exploited and new NAMs are developed and validated, animal models are still used in cancer research. Animals are used at multiple levels, from understanding molecular traits and pathways, to mimicking clinical aspects of tumor progression, to drug testing. In vivo approaches are not trivial and involve cross-disciplinary knowledge: animal biology and physiology, genetics, pathology, and animal welfare.

The aim of this chapter is not to list and address all animal models used in cancer research. Instead, the authors would like to guide experimenters in the strategies to adopt in both planning and performing in vivo experimental procedures, including the choice of cancer animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://retractionwatch.com/ last access on July 6, 2022.

  2. 2.

    https://www.humane-endpoints.info/en/why-humane-endpoints, Last access on July 6, 2022.

  3. 3.

    http://www.informatics.jax.org/, last access on July 6, 2022.

  4. 4.

    www.informatics.jax.org/humanDisease.shtml, last access on July 6, 2022.

  5. 5.

    https://phenome.jax.org/, last access on July 6, 2022.

  6. 6.

    https://rgd.mcw.edu/rgdweb/homepage/, last access on July 6, 2022.

  7. 7.

    http://pathbase.net/, las access on July 6, 2022.

  8. 8.

    https://www.syrcle.network/, last access on July 6, 2022.

  9. 9.

    https://www.ed.ac.uk/clinical-brain-sciences/research/camarades, last access on July 6, 2022.

  10. 10.

    https://preclinicaltrials.eu/, last access on July 6, 2022.

  11. 11.

    https://www.crd.york.ac.uk/prospero/, last access on July 6, 2022.

References

  1. Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London. https://caat.jhsph.edu/principles/the-principles-of-humane-experimental-technique

    Google Scholar 

  2. Festing S, Wilkinson R (2007) The ethics of animal research. Talking point on the use of animals in scientific research. EMBO Rep 8(6):526–530. https://doi.org/10.1038/sj.embor.7400993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mascolo MG, Perdichizzi S, Vaccari M, Rotondo F, Zanzi C, Grilli S, Paparella M, Jacobs MN, Colacci A (2018) The transformics assay: first steps for the development of an integrated approach to investigate the malignant cell transformation in vitro. Carcinogenesis 39(7):955–967. https://doi.org/10.1093/carcin/bgy037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Combes RD (2018) The replacement of animal tests. Altern Lab Anim 46(2):103–104. https://doi.org/10.1177/026119291804600202

    Article  PubMed  Google Scholar 

  5. Lovitt CJ, Shelper TB, Avery VM (2014) Advanced cell culture techniques for cancer drug discovery. Biology (Basel) 3(2):345–367. https://doi.org/10.3390/biology3020345

    Article  CAS  PubMed  Google Scholar 

  6. Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845. https://doi.org/10.1038/nrm2236

    Article  CAS  PubMed  Google Scholar 

  7. Rollin BE (2019) The ethics of animal use in cancer research. In: Bernicker E (ed) Cancer and society. Springer, Cham. https://doi.org/10.1007/978-3-030-05855-5_11

    Chapter  Google Scholar 

  8. Bik, Elisabeth. Science Integrity Digest (2020) Animal ethics misconduct: mice with very large tumors. Science Integrity Digest. https://scienceintegritydigest.com/2020/05/07/animal-ethics-misconduct-mice-with-very-large-tumors/. Accessed 3 Mar 2022

  9. Hu H, Qiu Y, Guo M, Huang Y, Fang L, Peng Z, Ji W, Xu Y, Shen S, Yan Y, Huang X, Zheng J, Su C et al (2015) Targeted Hsp70 expression combined with CIK-activated immune reconstruction synergistically exerts antitumor efficacy in patient-derived hepatocellular carcinoma xenograft mouse models. Oncotarget 6:1079–1089. Under investigation on https://www.oncotarget.com/article/2835/text/. Accessed 3 March 2022

    Article  PubMed  Google Scholar 

  10. Workman P, Aboagye E, Balkwill F et al (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102:1555–1577. https://doi.org/10.1038/sj.bjc.6605642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wallace J (2000) Humane endpoints and cancer research. ILAR J 41(2):87–93. https://doi.org/10.1093/ilar.41.2.87

    Article  CAS  PubMed  Google Scholar 

  12. Canadian Council on Animal Care (1998) Choosing an appropriate endpoint in experiments using animals for research, teaching and testing. https://www.ccac.ca/Documents/Standards/Guidelines/Appropriate_endpoint.pdf. Accessed on 18 Fe. 2022

  13. Expert Working Group of the EU Commission (2012) Working document on a severity assessment framework, en.pdf (europa.eu). Accessed 2 Mar 2022

    Google Scholar 

  14. 3Rs-Centre Utrecht Life Sciences (2016) Humane endpoints – why humane endpoints? https://www.humane-endpoints.info/en/why-humane-endpoints#. Accessed 18 Feb 2022

  15. Hendriksen CFM, Morton DB (eds) (1999) Humane endpoints in animal experiments for biomedical research; proceedings of the international conference; 22–25 November 1998. The Royal Society Medical Press, Ziest

    Google Scholar 

  16. National Research Council (US) Committee on Recognition and Alleviation of Pain in Laboratory Animals (2009) Recognition and alleviation of pain in laboratory animals. National Academies Press (US)

    Google Scholar 

  17. Silva-Reis R, Faustino-Rocha AI, Gonçalves M et al (2021) Refinement of animal model of colorectal carcinogenesis through the definition of novel humane endpoints. Animals (Basel) 11(4):985. Published 2021 Apr 1. https://doi.org/10.3390/ani11040985

    Article  PubMed  Google Scholar 

  18. Faustino-Rocha AI, Ginja M, Ferreira R, Oliveira PA (2019) Studying humane endpoints in a rat model of mammary carcinogenesis. Iran J Basic Med Sci 22(6):643–649. https://doi.org/10.22038/ijbms.2019.33331.7957

    Article  PubMed  PubMed Central  Google Scholar 

  19. Oliveira M, Nascimento-Gonçalves E, Silva J, Oliveira PA, Ferreira R, Antunes L, Arantes-Rodrigues R, Faustino-Rocha AI (2017) Implementation of humane endpoints in a urinary bladder carcinogenesis study in rats. In vivo (Athens, Greece) 31(6):1073–1080. https://doi.org/10.21873/invivo.11172

    Article  CAS  PubMed  Google Scholar 

  20. Solin SL, Shive HR, Woolard KD, Essner JJ, McGrail M (2015) Rapid tumor induction in zebrafish by TALEN-mediated somatic inactivation of the retinoblastoma1 tumor suppressor rb1. Sci Rep 5:13745. https://doi.org/10.1038/srep13745

    Article  PubMed  PubMed Central  Google Scholar 

  21. Winn CB, Hwang SK, Morin J et al (2021) Automated monitoring of respiratory rate as a novel humane endpoint: a refinement in mouse metastatic lung cancer models. PLoS One 16(9):e0257694. Published 2021 Sep 20. https://doi.org/10.1371/journal.pone.0257694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Farrell A, Shnyder S, Marston G, Coletta P, Gill J (2013) Non-invasive molecular imaging for preclinical cancer therapeutic development. Br J Pharmacol 169(4):P719–P735. https://doi.org/10.1111/bph.121552013

    Article  Google Scholar 

  23. Pacharinsak C, Beitz A (2008) Animal models of cancer pain. Comp Med 58(3):220–233

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wacnik PW, Pacharinsak C, Beitz AJ (2011) Animal models of cancer pain. In: Ma C, Zhang JM (eds) Animal models of pain. Neuromethods, vol 49. Humana Press, Totowa. https://doi.org/10.1007/978-1-60761-880-5_8

    Chapter  Google Scholar 

  25. Rollin BE (2015) Beyond pain – controlling suffering in laboratory animals. Bioscience 65(12):1113–1114. https://doi.org/10.1093/biosci/biv148

    Article  Google Scholar 

  26. Fleming PA, Muller D, Bateman PW (2007) Leave it all behind: a taxonomic perspective of autotomy in invertebrates. Biol Rev Camb Philos Soc 82(3):481–510. https://doi.org/10.1111/j.1469-185X.2007.00020.x

    Article  PubMed  Google Scholar 

  27. Baker SE, Ayers M, Beausoleil NJ, Belmain SR, Berdoy M, Buckle AP, Cagienard C, Cowan D, Fearn-Daglish J, Goddard P, Golledge HDR, Mullineaux E, Sharp T, Simmons A, Schmolz E (2022) An assessment of animal welfare impacts in wild Norway rat (Rattus norvegicus) management. Animal welfare (South Mimms, England) 31:51–68. https://doi.org/10.7120/09627286.31.1.005

    Article  Google Scholar 

  28. Cao L, Liu X, Lin EJ, Wang C, Choi EY, Riban V, Lin B, During MJ (2010) Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell 142(1):52–64. https://doi.org/10.1016/j.cell.2010.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Westwood JA, Darcy PK, Kershaw MH (2013) Environmental enrichment does not impact on tumor growth in mice [version 1; peer review: 2 approved]. F1000Research 2:140. https://doi.org/10.12688/f1000research.2-140.v1

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kokolus KM, Capitano ML, Lee CT, Eng JW, Waight JD, Hylander BL, Sexton S, Hong CC, Gordon CJ, Abrams SI, Repasky EA (2013) Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc Natl Acad Sci U S A 110(50):20176–20181. https://doi.org/10.1073/pnas.1304291110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pacharinsak C, Sharp P, Zintzsch A, Fuochi S (2022) Recognition of pain, distress, and suffering. In: Practical handbook on the 3Rs in the context of the directive 2010/63/EU. Academic Press, pp 181–205

    Google Scholar 

  32. Fentener van Vlissingen J, Borrens M, Girod A, Lelovas P, Morrison F, Torres YS (2015) The reporting of clinical signs in laboratory animals: FELASA Working Group Report. Lab Anim 49(4):267–283. https://doi.org/10.1177/0023677215584249

    Article  CAS  PubMed  Google Scholar 

  33. Ullman-Culleré MH, Foltz CJ (1999) Body condition scoring: a rapid and accurate method for assessing health status in mice. Comp Med 49(3):319–323

    Google Scholar 

  34. Orellana-Muriana JM (2012) Animal models in cancer research: assessment of severity and the application of humane endpoints. In: Martínez Murillo R, Martínez A (eds) Animal models of brain Tumors. Neuromethods, vol 77. Humana Press, Totowa. https://doi.org/10.1007/7657_2012_59

    Chapter  Google Scholar 

  35. Federal Department of Home Affairs FDHA, Federal Food Safety and Veterinary Office FSVO Animal Welfare No 1.04_e (2018) https://www.blv.admin.ch/dam/blv/en/dokumente/tiere/publikationen-und-forschung/tierversuche/klassifikation-schweregrad-tv.pdf.download.pdf/116104_EN.pdf. Accessed 2 Mar 2022

  36. AVMA Guidelines for the euthanasia of animals (2020). https://www.avma.org/sites/default/files/2020-02/Guidelines-on-Euthanasia-2020.pdf Accessed on 18 Feb 2022

  37. Teicher BA (ed) (2010) Tumor models in cancer research. Springer

    Google Scholar 

  38. Li Z, Zheng W, Wang H et al (2021) Application of animal models in cancer research: recent Progress and future prospects. Cancer Manag Res 13:2455–2475. Published 2021 Mar 15. https://doi.org/10.2147/CMAR.S302565

  39. Harman RM, Das SP, Bartlett AP et al (2021) Beyond tradition and convention: benefits of non-traditional model organisms in cancer research. Cancer Metastasis Rev 40:47–69. https://doi.org/10.1007/s10555-020-09930-6

    Article  PubMed  Google Scholar 

  40. van der Staay FJ, Arndt SS, Nordquist RE (2009) Evaluation of animal models of neurobehavioral disorders. Behav Brain Funct 5(1):1–23

    Google Scholar 

  41. Reilly KM (2016) Using the collaborative cross to study the role of genetic diversity in cancer-related phenotypes. Cold Spring Harb Protoc 2016(3):pdb.prot079178. https://doi.org/10.1101/pdb.prot079178

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang P, Wang Y, Langley SA et al (2019) Diverse tumour susceptibility in Collaborative Cross mice: identification of a new mouse model for human gastric tumourigenesis Gut 68:1942–1952. https://gut.bmj.com/content/68/11/1942

    CAS  PubMed  Google Scholar 

  43. Hunter K (2012) Mouse models of cancer: does the strain matter? Nat Rev Cancer 12:144–149. https://doi.org/10.1038/nrc3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. The Jackson Laboratory (2022) Diversity Outbred (J/DO) 009376 – Strain Details (jax.org). Accessed 2 Mar 2022

    Google Scholar 

  45. Churchill GA, Gatti DM, Munger SC, Svenson KL (2012) The diversity outbred mouse population. Mamm Genome 23(9–10):713–718. https://doi.org/10.1007/s00335-012-9414-2

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yang C, Wang Y, Xu W, Liu Z, Zhou S, Zhang M, Cui D (2019) Genome-wide association study using diversity outcross mice identified candidate genes of pancreatic cancer. Genomics 111(6):1882–1888.,ISSN 0888-7543. https://doi.org/10.1016/j.ygeno.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  47. Lifsted T, Le Voyer T, Williams M, Muller W, Klein-Szanto A, Buetow KH, Hunter KW (1998) Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 77(4):640–644

    Article  CAS  PubMed  Google Scholar 

  48. Kamb A (2005) What’s wrong with our cancer models? Nat Rev Drug Discov 4:161–165

    Article  CAS  PubMed  Google Scholar 

  49. Cheon DJ, Orsulic S (2011) Mouse models of cancer. Annu Rev Pathol 6:95–119

    Article  CAS  PubMed  Google Scholar 

  50. Ben-David U, Ha G, Tseng YY, Greenwald NF, Oh C, Shih J, McFarland JM, Wong B, Boehm JS, Beroukhim R, Golub TR (2017) Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet 49(11):1567–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Byrne AT, Alférez DG, Amant F, Annibali D, Arribas J, Biankin AV, Bruna A, Budinská E, Caldas C, Chang DK, Clarke RB (2017) Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer 17(4):254–268

    Article  CAS  PubMed  Google Scholar 

  52. Yuan Z, Fan X, Zhu JJ et al (2021) Presence of complete murine viral genome sequences in patient-derived xenografts. Nat Commun 12:2031. https://doi.org/10.1038/s41467-021-22200-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Benavides F, Rülicke T, Prins JB, Bussell J, Scavizzi F, Cinelli P, Herault Y, Wedekind D (2020 Apr) Genetic quality assurance and genetic monitoring of laboratory mice and rats: FELASA Working Group Report. Lab Anim 54(2):135–148

    Article  CAS  PubMed  Google Scholar 

  54. Kuperwasser C, Hurlbut GD, Kittrell FS et al (2000) Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. Am J Pathol 157(6):2151–2159

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gades NM et al (2008) Spontaneous vulvar papillomas in a colony of mice used for pancreatic cancer research. Comp Med 58(3):271–275

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mazur PK et al (2010) Identification of epidermal Pdx1 expression discloses different roles of Notch1 and Notch2 in murine KrasG12D-induced skin carcinogenesis in vivo. PLoS One 5(10):e13578

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bibby M (2004) Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer 40:852–857

    Article  CAS  PubMed  Google Scholar 

  58. Everitt JI et al (2018) Pathology study design, conduct, and reporting to achieve rigor and reproducibility in translational research using animal models. ILAR J 59(1):4–12

    Article  CAS  PubMed  Google Scholar 

  59. Ward JM, Shonfield PN, Sundberg J (2017) Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail. LabAnimal 46(4):146–151

    Google Scholar 

  60. Chichlowski M, Hale L (2009) Effects of Helicobacter infection on research: the case for eradication of Helicobacter from rodent research colonies. Comp Med 59(1):10–17

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kent ML, Bishop-Stewart JK, Matthews JL, Spitsbergen JM (2002) Pseudocapillaria tomentosa, a nematode pathogen, and associated neoplasms of zebrafish (Danio rerio) kept in research colonies. Comp Med 52(4):354–358

    CAS  PubMed  Google Scholar 

  62. Korba BE, Cote P, Hornbuckle W, Schinazi R, Gangemi JD, Tennant BC, Gerin JL (2000) Enhanced antiviral benefit of combination therapy with lamivudine and alpha interferon against Whv replication in chronic carrier woodchucks. Antivir Ther 5:95–104

    Article  CAS  PubMed  Google Scholar 

  63. Menne S, Cote PJ, Korba BE, Butler SD, George AL, Tochkov IA, Delaney WET, Xiong S, Gerin JL, Tennant BC (2005) Antiviral effect of oral administration of tenofovir disoproxil fumarate in woodchucks with chronic woodchuck hepatitis virus infection. Antimicrob Agents Chemother 49:2720–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu LY (2020) Nanoparticle uptake in a spontaneous and immunocompetent woodchuck liver cancer model. ACS Nano 14:4698–4715

    Article  CAS  PubMed  Google Scholar 

  65. Hadi F, Smith ESJ, Khaled WT (2021) Named Mole-rats: resistant to developing cancer or good at avoiding it? In: Buffenstein REA (ed) The extraordinary biology of the Naked Mole-Rat. Springer, Cham, pp 1033–1070

    Google Scholar 

  66. Maldonado G, Hernández G (2020) Translational control in the naked mole-rat as a model highly resistant to cancer. BBA – Rev Cancer. https://doi.org/10.1016/j.bbcan.2020.188455

  67. Ghaffari-Tabrizi-Wizsy N et al (2019) The avian chorioallantoic membrane as an alternative tool to study medullary thyroid cancer. Endocr Connect 8(5):462–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ribatti D, Tamma R (2018) The chick embryo chorioallantoic membrane as an in vivo experimental model to study human neuroblastoma. J Cell Physiol:1–6

    Google Scholar 

  69. Endo Y (2019) The history of the development of chick embryo tumor xenograft models. The Enzymes 46:11–22

    Article  CAS  PubMed  Google Scholar 

  70. Hawkridge AM (2014) The chicken model of spontaneous ovarian cancer. Proteomics Clin Appl 8:689–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pinfold TL, Brown GK, Bettiol SS, Woods GM (2014) Mouse model of devil facial tumour disease establishes that an effective immune response can be generated against the cancer cells. Front Immunol 5:251. https://doi.org/10.3389/fimmu.2014.00251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Margres MJ, Ruiz-Aravena M, Hamede R, Chawla K, Patton AH, Lawrance MF, Fraik AK, Stahlke AR, Davis BW, Ostrander EA, Jones ME (2020 Aug 1) Spontaneous tumor regression in Tasmanian devils associated with RASL11A activation. Genetics 215(4):1143–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Khanna C, London C, Vail D, Mazcko C, Hirschfeld S (2009) Guiding the optimal translation of new cancer treatments from canine to human cancer patients. Clin Cancer Res 15(18):5671–5677. https://doi.org/10.1158/1078-0432.CCR-09-0719

    Article  PubMed  PubMed Central  Google Scholar 

  74. European Medicines Agency (EMA) (2001) Committee VS. Good clinical practice VICH GL9 final guidance. https://www.ema.europa.eu/en/documents/scientific-guideline/vich-gl9-good-clinical-practices-step-7_en.pdf. Accessed 19 Feb 2022

  75. Di Cerbo A, Palmieri B, De Vico G, Iannitti T (2014) Onco-epidemiology of domestic animals and targeted therapeutic attempts: perspectives on human oncology. J Cancer Res Clin Oncol 140(11):1807–1814. https://doi.org/10.1007/s00432-014-1664-9

    Article  PubMed  PubMed Central  Google Scholar 

  76. Vail DM, Thamm DH (2004) Spontaneously occurring Tumors in companion animals as models for drug development. In: Teicher BA, Andrews PA (eds) Anticancer drug development guide. Cancer drug discovery and development. Humana Press, Totowa. https://doi.org/10.1007/978-1-59259-739-0_12

    Chapter  Google Scholar 

  77. De Vico G, Maiolino P (2008) Canine and feline models for cancer. In: Conn PM (ed) Sourcebook of models for biomedical research. Humana Press. https://doi.org/10.1007/978-1-59745-285-4_70

    Chapter  Google Scholar 

  78. MacEwen EG (1990) Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment. Cancer Metastasis Rev 9(2):125–136. https://doi.org/10.1007/BF00046339

    Article  CAS  PubMed  Google Scholar 

  79. McNiel EA (2001) Vaccine-associated sarcomas in cats: a unique cancer model. Clin Orthop Relat Res 382:21–27. https://doi.org/10.1097/00003086-200101000-00005

    Article  Google Scholar 

  80. Davis BW, Ostrander EA (2014) Domestic dogs and cancer research: a breed-based genomics approach. ILAR J 55(1):59–68. https://doi.org/10.1093/ilar/ilu017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schiffman JD, Matthew B (2015) Comparative oncology: what dogs and other species can teach us about humans with cancer. Phil Trans R Soc B3702014023120140231. https://doi.org/10.1098/rstb.2014.0231

  82. Giuliano A (2021) Companion animal model in translational oncology; feline oral squamous cell carcinoma and canine oral melanoma. Biology 11(1):54. https://doi.org/10.3390/biology11010054

    Article  PubMed  PubMed Central  Google Scholar 

  83. Maeda S et al (2022) Anti-CCR4 treatment depletes regulatory T cells and leads to clinical activity in a canine model of advanced prostate cancer. J Immunother Cancer 10(e003731)

    Google Scholar 

  84. Gordon I, Paoloni M, Mazcko C, Khanna C (2009) The Comparative Oncology Trials Consortium: using spontaneously occurring cancers in dogs to inform the cancer drug development pathway. PLoS Med 6(10):e1000161. https://doi.org/10.1371/journal.pmed.1000161

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pinho SS, Carvalho S, Cabral J, Reis CA, Gärtner F (2012) Canine tumors: a spontaneous animal model of human carcinogenesis. Transl Res 159(3):165–172. https://doi.org/10.1016/j.trsl.2011.11.005

    Article  PubMed  Google Scholar 

  86. Mellor DJ (2016) Updating animal welfare thinking: moving beyond the “five freedoms” towards “a life worth living”. Animals 6(3):21. https://doi.org/10.3390/ani6030021

    Article  PubMed  PubMed Central  Google Scholar 

  87. van der Naald M, Chamuleau SAJ, Menon JML, et al (2021) A 3-year evaluation of preclinicaltrials.eu reveals room for improvement in preregistration of animal studies. PLoS Biol 19(9):e3001397. Published 2021 Sep 9. https://doi.org/10.1371/journal.pbio.3001397

  88. Pound P, Ritskes-Hoitinga M (2020) Can prospective systematic reviews of animal studies improve clinical translation? J Transl Med 18(1):15. Published 2020 Jan 9. https://doi.org/10.1186/s12967-019-02205-x

    Article  PubMed  PubMed Central  Google Scholar 

  89. van der Naald M, Wenker S, Doevendans PA, Wever KE, Chamuleau SA (2020) Publication rate in preclinical research: a plea for preregistration. BMJ Open Sci 4(1):e100051

    PubMed  PubMed Central  Google Scholar 

  90. Adiseshaiah PP, Patel NL, Ileva LV, Kalen JD, Haines DC, McNeil SE (2014) Longitudinal imaging of cancer cell metastases in two preclinical models: a correlation of noninvasive imaging to histopathology. Int J Mol Imaging 2014:102702. https://doi.org/10.1155/2014/102702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Puaux A-L, Ong LC, Jin Y, Teh I, Hong M, Chow PKH, Golay X, Abastado J-P (2011) A comparison of imaging techniques to monitor tumor growth and cancer progression in living animals. Int J Mol Imaging 2011., Article ID 321538, 12 pages. https://doi.org/10.1155/2011/321538

  92. Nwagwu CD, Defensor E, Jiang MY et al (2020) Endpoint in ovarian cancer xenograft model predicted by nighttime motion metrics. Lab Anim 49:227–232. https://doi.org/10.1038/s41684-020-0594-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viola Galligioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fuochi, S., Galligioni, V. (2023). Disease Animal Models for Cancer Research. In: Movia, D., Prina-Mello, A. (eds) Cancer Cell Culture. Methods in Molecular Biology, vol 2645. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3056-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3056-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3055-6

  • Online ISBN: 978-1-0716-3056-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics