Skip to main content

High-Efficiency Single-Cell Electrical Impedance Spectroscopy

  • Protocol
  • First Online:
Cell Viability Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2644))

  • 1252 Accesses

Abstract

Single-cell impedance measurement is label free and noninvasive in characterizing the electrical properties of single cells. At present, though widely used for impedance measurement, electrical impedance flow cytometry (IFC) and electrical impedance spectroscopy (EIS) are used alone for most microfluidic chips. Here, we describe high-efficiency single-cell electrical impedance spectroscopy, which combines in one chip the IFC and EIS techniques for high-efficiency single-cell electrical property measurement. We envision that the strategy of combining IFC and EIS provides a new thought in the efforts to enhance the efficiency of electrical property measurement for single cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201. https://doi.org/10.1016/j.cell.2015.04.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Galler K, Brautigam K, Grosse C, Popp J, Neugebauer U (2014) Making a big thing of a small cell--recent advances in single cell analysis. Analyst 139(6):1237–1273. https://doi.org/10.1039/c3an01939j

    Article  CAS  PubMed  Google Scholar 

  3. Huang L, Feng Y, Liang F, Zhao P, Wang W (2021) Dual-fiber microfluidic chip for multimodal manipulation of single cells. Biomicrofluidics 15(1):014106. https://doi.org/10.1063/5.0039087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mansor MA, Ahmad MR (2015) Single cell electrical characterization techniques. Int J Mol Sci 16(6):12686–12712. https://doi.org/10.3390/ijms160612686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Honrado C, Bisegna P, Swami NS, Caselli F (2021) Single-cell microfluidic impedance cytometry: from raw signals to cell phenotypes using data analytics. Lab Chip 21(1):22–54. https://doi.org/10.1039/d0lc00840k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vembadi A, Menachery A, Qasaimeh MA (2019) Cell cytometry: review and perspective on biotechnological advances. Front Bioeng Biotechnol 7:147. https://doi.org/10.3389/fbioe.2019.00147

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shrirao AB, Fritz Z, Novik EM, Yarmush GM, Schloss RS, Zahn JD, Yarmush ML (2018) Microfluidic flow cytometry: the role of microfabrication methodologies, performance and functional specification. Technology 6(1):1–23. https://doi.org/10.1142/S2339547818300019

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fertig N, Blick RH, Behrends JC (2002) Whole cell patch clamp recording performed on a planar glass chip. Biophys J 82(6):3056–3062. https://doi.org/10.1016/S0006-3495(02)75646-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu Y, Xie X, Duan Y, Wang L, Cheng Z, Cheng J (2016) A review of impedance measurements of whole cells. Biosens Bioelectron 77:824–836. https://doi.org/10.1016/j.bios.2015.10.027

    Article  CAS  PubMed  Google Scholar 

  10. Zheng Y, Nguyen J, Wei Y, Sun Y (2013) Recent advances in microfluidic techniques for single-cell biophysical characterization. Lab Chip 13(13):2464–2483. https://doi.org/10.1039/c3lc50355k

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen TA, Yin TI, Reyes D, Urban GA (2013) Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Anal Chem 85(22):11068–11076. https://doi.org/10.1021/ac402761s

    Article  CAS  PubMed  Google Scholar 

  12. Huang L, Zhao P, Wang W (2018) 3D cell electrorotation and imaging for measuring multiple cellular biophysical properties. Lab Chip 18(16):2359–2368. https://doi.org/10.1039/c8lc00407b

    Article  CAS  PubMed  Google Scholar 

  13. Hughes MP (1998) Computer-aided analysis of conditions for optimizing practical electrorotation. Phys Med Biol 43(12):3639. https://doi.org/10.1088/0031-9155/43/12/019

    Article  CAS  PubMed  Google Scholar 

  14. Bull BS, Schneiderman MA, Brecher G (1965) Platelet counts with the Coulter counter. Am J Clin Pathol 44(6):678. https://doi.org/10.1093/ajcp/44.6.678

    Article  CAS  PubMed  Google Scholar 

  15. Rodriguez-Trujillo R, Castillo-Fernandez O, Garrido M, Arundell M, Valencia A, Gomila G (2008) High-speed particle detection in a micro-Coulter counter with two-dimensional adjustable aperture. Biosens Bioelectron 24(2):290–296. https://doi.org/10.1016/j.bios.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  16. Holmes D, Pettigrew D, Reccius CH, Gwyer JD, van Berkel C, Holloway J, Davies DE, Morgan H (2009) Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip 9(20):2881–2889. https://doi.org/10.1039/b910053a

    Article  CAS  PubMed  Google Scholar 

  17. Mansoorifar A, Koklu A, Beskok A (2019) Quantification of cell death using an impedance-based microfluidic device. Anal Chem 91(6):4140–4148. https://doi.org/10.1021/acs.analchem.8b05890

    Article  CAS  PubMed  Google Scholar 

  18. Mi L, Huang L, Li J, Xu G, Wu Q, Wang W (2016) A fluidic circuit based, high-efficiency and large-scale single cell trap. Lab Chip 16(23):4507–4511. https://doi.org/10.1039/c6lc01120a

    Article  CAS  PubMed  Google Scholar 

  19. Chai H, Feng Y, Liang F, Wang W (2021) A microfluidic device enabling deterministic single cell trapping and release. Lab Chip 21(13):2486–2494. https://doi.org/10.1039/d1lc00302j

    Article  CAS  PubMed  Google Scholar 

  20. Lai C-W, Hsiung S-K, Yeh C-L, Chiou A, Lee G-B (2008) A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch. Sens Actuators B-Chem 135(1):388–397. https://doi.org/10.1016/j.snb.2008.08.041

    Article  CAS  Google Scholar 

  21. Feng Y, Huang L, Zhao P, Liang F, Wang W (2019) A microfluidic device integrating impedance flow cytometry and electric impedance spectroscopy for high-efficiency single-cell electrical property measurement. Anal Chem 91(23):15204–15212. https://doi.org/10.1021/acs.analchem.9b04083

    Article  CAS  PubMed  Google Scholar 

  22. Morgan H, Sun T, Holmes D, Gawad S, Green NG (2007) Single cell dielectric spectroscopy. J Phys D-Appl Phys 40(1):61–70. https://doi.org/10.1088/0022-3727/40/1/s10

    Article  CAS  Google Scholar 

  23. Jin D, Deng B, Li JX, Cai W, Tu L, Chen J, Wu Q, Wang WH (2015) A microfluidic device enabling high-efficiency single cell trapping. Biomicrofluidics 9(1):014101. https://doi.org/10.1063/1.4905428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feng Y, Cheng Z, Chai H, He W, Huang L, Wang W (2022) Neural network-enhanced real-time impedance flow cytometry for single-cell intrinsic characterization. Lab Chip 22:240–249. https://doi.org/10.1039/d1lc00755f

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the NSFC (no. 62174096, 21727813, and 52105572) and the One Thousand Young Talent Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhui Wang .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 1

DataAcqurie-Labview2018 (VI 310 kb)

Data 2

DataProcessing-matlab-R2016b (M 1 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Feng, Y., Huang, L., Zhao, P., Liang, F., Wang, W. (2023). High-Efficiency Single-Cell Electrical Impedance Spectroscopy. In: Friedrich, O., Gilbert, D.F. (eds) Cell Viability Assays. Methods in Molecular Biology, vol 2644. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3052-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3052-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3051-8

  • Online ISBN: 978-1-0716-3052-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics