Skip to main content

Quantifying pH in Malaria Using pHluorin and Flow Cytometry

  • Protocol
  • First Online:
Cell Viability Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2644))

Abstract

Intracellular pH (pHi) plays a critical role in the regulation of numerous biological functions where specific pH ranges are required for optimal operation within cells. Slight pH changes can impact the regulation of diverse molecular processes, including enzymatic activities, ion channels, and transporters, which all play a role in cell functions. Methods for quantifying pHi continue to evolve and include various optical methods using fluorescent pH indicators. Here, we provide a protocol to measure pHi in the cytosol of Plasmodium falciparum blood stage parasites by means of flow cytometry and using pHluorin2, a pH-sensitive fluorescent protein that has been introduced into the genome of the parasite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Putnam RW (2012) Intracellular pH regulation. Cell Physiology Book Source, Academic press; 17(4):303–321. https://doi.org/10.1016/B978-0-12-387738-3.00017-2

  2. Banerjee R, Liu J, Beatty W et al (2001) Four plasmepsins are active in the plasmodium falciparum food vacuole, including a protease with an active-site histidine. PNAS 99(2):990–995. https://doi.org/10.1073/pnas.022630099

    Article  CAS  Google Scholar 

  3. Dzekunov SM, Ursos LM, Roepe PD (2000) Digestive vacuolar pH of intact intraerythrocytic P. falciparum either sensitive or resistant to chloroquine. Mol Biochem Parasitol 110(1):107–124. https://doi.org/10.1016/s0166-6851(00)00261-9

    Article  CAS  PubMed  Google Scholar 

  4. Ginsburg HE, Nissani E, Krugliak M (1989) Alkalinization of the food vacuole of malaria parasites by quinoline drugs and alkylamines is not correlated with their antimalarial activity. Biochem Pharmacol 38(16):2645–2654. https://doi.org/10.1016/0006-2952(89)90550-9

    Article  CAS  PubMed  Google Scholar 

  5. Rohrbach P (2009) Imaging ion flux and ion homeostasis in blood stage malaria parasites. Biotechnol J 4(6):812–825. https://doi.org/10.1002/biot.200900084

    Article  CAS  PubMed  Google Scholar 

  6. Wissing F, Sanchez CP, Rohrbach P et al (2002) Illumination of the malaria parasite plasmodium falciparum alters intracellular pH. Implications for live cell imaging. J Biol Chem 277(40):37747–37755. https://doi.org/10.1074/jbc.M204845200

    Article  CAS  PubMed  Google Scholar 

  7. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH sensitive green fluorescent proteins. Nature 394(6689):192–195. https://doi.org/10.1038/28190

    Article  CAS  PubMed  Google Scholar 

  8. Kuhn Y, Rohrbach P, Lanzer M (2007) Quantitative pH measurements in plasmodium falciparum-infected erythrocytes using pHluorin. Cell Microbiol 9(4):1004–1013. https://doi.org/10.1111/j.1462-5822.2006.00847.x

    Article  CAS  PubMed  Google Scholar 

  9. Hess ST, Heikal AA, Webb WW (2004) Fluorescence Photoconversion kinetics in novel green fluorescent protein pH sensors (pHluorins). J Phys Chem B 108(28):10138–10148. https://doi.org/10.1021/jp0362077

    Article  CAS  Google Scholar 

  10. Rohrbach P (2012) Quantitative fluorescent live cell imaging of intracellular Ca2+ and H+ ions in malaria parasites. Methods Enzymol 505:469–483. https://doi.org/10.1016/b978-0-12-388448-0.00032-2

    Article  CAS  PubMed  Google Scholar 

  11. Mahon MJ (2011) pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein. Adv Biosci Biotechnol 2(3):132–137. https://doi.org/10.4236/abb.2011.23021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yayon A, Cabantchik ZI, Ginsburg H (1984) Identification of the acidic compartment of plasmodium falciparum-infected human erythrocytes as the target of the antimalarial drug chloroquine. EMBO J 3(11):269–2700. https://doi.org/10.1002/j.1460-2075.1984.tb02195.x

    Article  Google Scholar 

  13. Krogstad DJ, Schlesinger PH, Gluzman IY (1985) Antimalarials increase vesicle pH in plasmodium falciparum. J Cell Biol 101(6):2302–2309. https://doi.org/10.1083/jcb.101.6.2302

    Article  CAS  PubMed  Google Scholar 

  14. Hayward R, Saliba KJ, Kirk K (2006) The pH of the digestive vacuole of plasmodium falciparum is not associated with chloroquine resistance. J Cell Sci 119(Pt 6):1016–1025. https://doi.org/10.1242/jcs.02795

    Article  CAS  PubMed  Google Scholar 

  15. Trager W, Jensen JB (1976) Human malaria parasite in continuous culture. Science 193(4254):673–675. https://doi.org/10.1126/science.781840

    Article  CAS  PubMed  Google Scholar 

  16. Wünsch S, Sanchez CP, Gekle M et al (1998) Differential stimulation of the Na+/H+ exchanger determines chloroquine uptake in plasmodium falciparum. J Cell Biol 140(2):335–345. https://doi.org/10.1083/jcb.140.2.335

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wünsch S, Horrocks P, Gekle M et al (1999) Single-cell measurements of ion concentrations within the intracellular parasite. Parasitol Today 15(5):198–200. https://doi.org/10.1016/s0169-4758(99)01432-5

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding of the Fonds de Recherche du Quebec – Nature and Technology (FRQ-NT) and the Natural Sciences and Engineering Research Council of Canada (NSERC). The funders had no role in the study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Rohrbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Agyapong, J., Rohrbach, P. (2023). Quantifying pH in Malaria Using pHluorin and Flow Cytometry. In: Friedrich, O., Gilbert, D.F. (eds) Cell Viability Assays. Methods in Molecular Biology, vol 2644. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3052-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3052-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3051-8

  • Online ISBN: 978-1-0716-3052-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics