Skip to main content

Interplay of Methodology and Conceptualization in Plant Abiotic Stress Signaling

  • Protocol
  • First Online:
Plant Abiotic Stress Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2642))

Abstract

Characterizing the mechanisms of plant sensitivity and reactivity to physicochemical cues related to abiotic stresses is of utmost importance for understanding plant-environment interactions, adaptations of the sessile lifestyle, and the evolutionary dynamics of plant species and populations. Moreover, plant communities are confronted with an environmental context of global change, involving climate changes, planetary pollutions of soils, waters and atmosphere, and additional anthropogenic changes. The mechanisms through which plants perceive abiotic stress stimuli and transduce stress perception into physiological responses constitute the primary line of interaction between the plant and the environment, and therefore between the plant and global changes. Understanding how plants perceive complex combinations of abiotic stress signals and transduce the resulting information into coordinated responses of abiotic stress tolerance is therefore essential for devising genetic, agricultural, and agroecological strategies that can ensure climate change resilience, global food security, and environmental protection. Discovery and characterization of sensing and signaling mechanisms of plant cells are usually carried out within the general framework of eukaryotic sensing and signal transduction. However, further progress depends on a close relationship between the conceptualization of sensing and signaling processes with adequate methodologies and techniques that encompass biochemical and biophysical approaches, cell biology, molecular biology, and genetics. The integration of subcellular and cellular analyses as well as the integration of in vitro and in vivo analyses are particularly important to evaluate the efficiency of sensing and signaling mechanisms in planta. Major progress has been made in the last 10–20 years with the caveat that cell-specific processes and in vivo processes still remain difficult to analyze and with the additional caveat that the range of plant models under study remains rather limited relatively to plant biodiversity and to the diversity of stress situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang H, Zhu J, Gong Z, Zhu JK (2022) Abiotic stress responses in plants. Nat Rev Genet 23:104–119. https://doi.org/10.1038/s41576-021-00413-0

    Article  CAS  PubMed  Google Scholar 

  2. Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bigot S, Buges J, Gilly L et al (2018) Pivotal roles of environmental sensing and signaling mechanisms in plant responses to climate change. Glob Chang Biol 24:5573–5589

    Article  PubMed  Google Scholar 

  4. Boulc’h PN, Caullireau E, Faucher E et al (2020) Abiotic stress signalling in extremophile plants. J Exp Bot 71:5771–5785

    Article  PubMed  Google Scholar 

  5. Claeys H, Van Landeghem S, Dubois M et al (2014) What is stress? Dose-response effects in commonly used in vitro stress assays. Plant Physiol 165:519–527. https://doi.org/10.1104/pp.113.234641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang H, Sonnewald U (2017) Differences and commonalities of plant responses to single and combined stresses. Plant J 90:839–855. https://doi.org/10.1111/tpj.13557

    Article  CAS  PubMed  Google Scholar 

  7. Carmody M, Waszczak C, Idänheimo N et al (2016) ROS signalling in a destabilised world: a molecular understanding of climate change. J Plant Physiol 203:69–83. https://doi.org/10.1016/j.jplph.2016.06.008

    Article  CAS  PubMed  Google Scholar 

  8. Prerostova S, Dobrev PI, Gaudinova A et al (2017) Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. Plant Sci 264:188–198. https://doi.org/10.1016/j.plantsci.2017.07.020

    Article  CAS  PubMed  Google Scholar 

  9. De Nadal E, Ammerer G, Posas F (2011) Controlling gene expression in response to stress. Nat Rev Genet 12:833–845

    Article  PubMed  Google Scholar 

  10. Nguyen D, Rieu I, Mariani C, van Dam NM (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol 91:727–740. https://doi.org/10.1007/s11103-016-0481-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723. https://doi.org/10.3389/fpls.2015.00723

    Article  PubMed  PubMed Central  Google Scholar 

  12. Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866. https://doi.org/10.1104/pp.113.221044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prasch CM, Sonnewald U (2015) Signaling events in plants: stress factors in combination change the picture. Environ Exp Bot 114:4–14. https://doi.org/10.1016/j.envexpbot.2014.06.020

    Article  CAS  Google Scholar 

  14. Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21:329–340. https://doi.org/10.1016/j.tplants.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  15. Zandalinas SI, Fritschi FB, Mittler R (2021a) Global warming, climate change and environmental pollution: recipe for a multifactorial stress combination disaster. Trends Plant Sci 26:588–599. https://doi.org/10.1016/j.tplants.2021.02.011

    Article  CAS  PubMed  Google Scholar 

  16. Zandalinas SI, Sengupta S, Fristchi FB et al (2021b) The impact of multifactorial stress combination on plant growth and survival. New Phytol 230:1034–1048. https://doi.org/10.1111/nph.17232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mishra V, Singh P, Tripathi DK, Corpas FJ, Singh VP (2021) Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning. Trends Plant Sci 26:1270–1285

    Article  CAS  PubMed  Google Scholar 

  18. Mishra S, Chowdhary AA, Bhau BS, Srivastava V (2022) Hydrogen sulphide-mediated alleviation and its interplay with other signalling molecules during temperature stress. Plant Biol (Stuttg) 24:569–575. https://doi.org/10.1111/plb.13406

    Article  CAS  PubMed  Google Scholar 

  19. Beltrán J, Wamboldt Y, Sanchez R et al (2018) Specialized plastids trigger tissue-specific signaling for systemic stress response in plants. Plant Physiol 178:672–683

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dickinson PJ, Kumar M, Martinho C et al (2017) Chloroplast signaling gates thermotolerance in Arabidopsis. Cell Rep 22:1657–1665. https://doi.org/10.1016/j.celrep.2018.01.054

    Article  CAS  Google Scholar 

  21. Singh AH, Wolf DM, Wang P, Arkin AP (2008) Modularity of stress response evolution. Proc Natl Acad Sci U S A 105:7500–7505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leydon AR, Gala HP, Guiziou S et al (2020) Engineering synthetic signaling in plants. Annu Rev Plant Biol 71:767–788. https://doi.org/10.1146/annurev-arplant-081519-035852

    Article  CAS  PubMed  Google Scholar 

  23. Bourdais G, Burdiak P, Gauthier A et al (2015) Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress. PLoS Genet 11:e1005373. https://doi.org/10.1371/journal.pgen.1005373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harb A, Krishnan A, Madana MR, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hayes S, Sharma A, Fraser DP et al (2017) UV-B perceived by the UVR8 photoreceptor inhibits plant thermomorphogenesis. Curr Biol 27:1–8. https://doi.org/10.1016/j.cub.2016.11.004

    Article  CAS  Google Scholar 

  26. Kudla J, Batistič O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563. https://doi.org/10.1105/tpc.109.072686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ramel F, Birtic S, Ginies C et al (2012a) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci U S A 109:5535–5540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramel F, Sulmon C, Serra AA et al (2012b) Xenobiotic sensing and signalling in higher plants. J Exp Bot 63:3999–4014

    Article  CAS  PubMed  Google Scholar 

  29. Ranty B, Aldon D, Cotelle V et al (2016) Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front Plant Sci 7:327

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dourmap C, Roque S, Morin A et al (2020) Stress signalling dynamics of the mitochondrial transport chain and oxidative phosphorylation system in higher plants. Ann Bot 125:721–736. https://doi.org/10.1093/aob/mcz184

    Article  CAS  PubMed  Google Scholar 

  31. Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  32. Konrath F, Mittermeier A, Cristiano E et al (2020) A systematic approach to decipher crosstalk in the p53 signaling pathway using single cell dynamics. PLoS Comput Biol 16:e1007901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maity K, Heumann JM, McGrath AP et al (2019) Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating. Proc Natl Acad Sci U S A 116:14309–14318. https://doi.org/10.1073/pnas.1900774116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McAinsh MR, Hetherington AM (1998) Encoding specificity in Ca2+ signaling systems. Trends Plant Sci 3:32–36

    Article  Google Scholar 

  35. Wang SW, Tang LH (2019) Emergence of collective oscillations in adaptive cells. Nat Commun 10:5613. https://doi.org/10.1038/s41467-019-13573-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867. https://doi.org/10.1111/tpj.13299

    Article  CAS  PubMed  Google Scholar 

  37. Gilroy S, Suzuki N, Miller G et al (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–630. https://doi.org/10.1016/j.tplants.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  38. Rizhsky L, Liang H, Shuman J et al (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696. https://doi.org/10.1104/pp.103.033431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Suzuki N, Rivero RM, Shulaev V et al (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43. https://doi.org/10.1111/nph.12797

    Article  PubMed  Google Scholar 

  40. Almadanim MC, Alexandre BM, Rosa MTG et al (2017) Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. Plant Cell Environ 40:1197–1213

    Article  CAS  PubMed  Google Scholar 

  41. Gao JP, Chao DY, Lin HX (2008) Toward understanding molecular mechanisms of abiotic stress responses in rice. Rice 1:36–51

    Article  Google Scholar 

  42. Gibbs DJ, Lee SC, Isa NM et al (2011) Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479:415–418. https://doi.org/10.1038/nature10534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Markham KK, Greenham K (2021) Abiotic stress through time. New Phytol 231:40–46. https://doi.org/10.1111/nph.17367

    Article  PubMed  Google Scholar 

  44. Zait Y, Ferrero-Serrano A, Assmann SM (2021) The α subunit of the heterotrimeric G protein regulates mesophyll CO2 conductance and drought tolerance in rice. New Phytol 232:2324–2338. https://doi.org/10.1111/nph.17730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Septiningsih EM, Pamplona AM, Sanchez DL et al (2009) Development of submergence-tolerant rice cultivars : the Sub1 locus and beyond. Ann Bot 103:151–160

    Article  CAS  PubMed  Google Scholar 

  46. Jeyasri R, Muthuramalingam P, Satish L et al (2021) An overview of abiotic stress in cereal crops: negative impacts, regulation, biotechnology and integrative omics. Plants (Basel) 10:1472. https://doi.org/10.3390/plants10071472

  47. Voesenek LACJ, van Veen H, Sasidharan R (2014) Learning from nature: the use of non-model species to identify novel acclimations to flooding stress. AoB Plants 6:plu016

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dassanayake M, Haas JS, Bohnert HJ, Cheeseman JM (2009) Shedding light on an extremophile lifestyle through transcriptomics. New Phytol 183:764–775

    Article  CAS  PubMed  Google Scholar 

  49. Dussarrat T, Prigent S, Latorre C et al (2022) Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience. New Phytol 234:1614–1628

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lee J, Noh EK, Choi HS et al (2013) Transcriptome sequencing of the Antarctic vascular plant Deschampsia antarctica Desv. under abiotic stress. Planta 237:823–836

    Article  CAS  PubMed  Google Scholar 

  51. Müller HM, Schäfer N, Bauer H et al (2017) The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel. New Phytol 216:150–162

    Article  PubMed  Google Scholar 

  52. Nie L, Feng J, Fan P et al (2015) Comparative proteomics of root plasma membrane proteins reveals the involvement of calcium signalling in NaCl facilitated nitrate uptake in Salicornia europaea. J Exp Bot 66:4497–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang W, Liu S, Li C et al (2019) Transcriptome sequencing of Antarctic moss under salt stress emphasizes the important roles of the ROS-scavenging system. Gene 696:122–134

    Article  CAS  PubMed  Google Scholar 

  54. Zhao Z, Tan L, Dang C et al (2012) Deep-sequencing transcriptome analysis of chilling tolerance mechanisms of a subnival alpine plant, Chorispora bungeana. BMC Plant Biol 12:222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bräutigam K, Vining KJ, Lafon-Placette C et al (2013) Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol Evol 3:399–415. https://doi.org/10.1002/ece3.461

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hao L, Zhang Y, Wang S et al (2020) A constitutive and drought-responsive mRNA undergoes long-distance transport in pear (Pyrus betulaefolia) phloem. Plant Sci 293:110419

    Article  CAS  PubMed  Google Scholar 

  57. Hartmann FP, Tinturier E, Julien JL, Leblanc-Fournier N (2021) Between stress and response: function and localization of mechanosensitive Ca2+ channels in herbaceous and perennial plants. Int J Mol Sci 22:11043. https://doi.org/10.1016/j.tplants.2017.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jia Y, Niu Y, Zhao H et al (2022) Hierarchical transcription factor and regulatory network for drought response in Betula platyphylla. Hortic Res 9:uhac040. https://doi.org/10.1093/hr/uhac040

  59. Kondhare KR, Patil NS, Banerjee AK (2021) A historical overview of long-distance signalling in plants. J Exp Bot 72:4218–4236

    Article  CAS  PubMed  Google Scholar 

  60. Magalhães AP, Verde N, Reis F et al (2016) RNA-Seq and gene network analysis uncover activation of an ABA-dependent signalosome during the cork oak root response to drought. Front Plant Sci 6:1195

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yang G, Gao X, Ma K et al (2018) The walnut transcription factor JrGRAS2 contributes to high temperature stress tolerance involving in Dof transcriptional regulation and HSP protein expression. BMC Plant Biol 18:367. https://doi.org/10.1186/s12870-018-1568-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang H, Lv F, Han X, Xia X, Yin W (2013) The calcium sensor PeCBL1, interacting with PeCIPK24/25 and PeCIPK26, regulates Na+/K+ homeostasis in Populus euphratica. Plant Cell Rep 32:611–621

    Article  CAS  PubMed  Google Scholar 

  63. De Sousa A, AbdElgawad H, Fidalgo F et al (2020) Al exposure increases proline levels by different pathways in an Al-sensitive and an Al-tolerant rye genotype. Sci Rep 10:16401. https://doi.org/10.1038/s41598-020-73358-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jinqiu Y, Bing L, Tingting S et al (2021) Integrated physiological and transcriptomic analyses responses to altitude stress in oat (Avena sativa L.). Front Genet 12:638683. https://doi.org/10.3389/fgene.2021.638683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lim SD, Oh DG, Park YC, Jang CS (2020) Molecular characterization of a RING E3 ligase SbHCI1 in sorghum under heat and abscisic acid stress. Planta 252:89. https://doi.org/10.1007/s00425-020-03469-0

    Article  CAS  PubMed  Google Scholar 

  66. Liu C, Xiang D, Wu Q et al (2021) Dynamic transcriptome and co-expression analysis suggest the potential roles of small secreted peptides from Tartary buckwheat (Fagopyrum tataricum) in low nitrogen stress response. Plant Sci 313:111091. https://doi.org/10.1016/j.plantsci.2021.111091

    Article  CAS  PubMed  Google Scholar 

  67. Majeed S, Nawaz F, Naeem M et al (2020) Nitric oxide regulates water status and associated enzymatic pathways to inhibit nutrients imbalance in maize (Zea mays L.) under drought stress. Plant Physiol Biochem 155:147–160. https://doi.org/10.1016/j.plaphy.2020.07.005

    Article  CAS  PubMed  Google Scholar 

  68. Qiu CW, Zhang C, Wang NH et al (2021) Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.). Environ Pollut 273:116486. https://doi.org/10.1016/j.envpol.2021.116486

    Article  CAS  PubMed  Google Scholar 

  69. Xu C, Luo M, Sun X et al (2022) SiMYB19 from foxtail millet (Setaria italica) confers transgenic rice tolerance to high salt stress in the field. Int J Mol Sci 23:756. https://doi.org/10.3390/ijms23020756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou Y, He R, Guo Y et al (2019) A novel ABA functional analogue B2 enhances drought tolerance in wheat. Sci Rep 9:2887. https://doi.org/10.1038/s41598-019-39013-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. De Luca V, Salim V, Atsumi SM, Yu F (2012) Mining the biodiversity of plants: a revolution in the making. Science 336:1658–1661

    Article  PubMed  Google Scholar 

  72. Pérez-Escobar OA, Richardson JE, Howes MR et al (2020) Untapped resources for medical research. Science 369(6505):781–782. https://doi.org/10.1126/science.abc8085

    Article  CAS  PubMed  Google Scholar 

  73. Licausi F, Kosmacz M, Weits DA et al (2011) Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479:419–422. https://doi.org/10.1038/nature10536

    Article  CAS  PubMed  Google Scholar 

  74. White MD, Kamps JJAG, East S et al (2018) The plant cysteine oxidases from Arabidopsis thaliana are kinetically tailored to act as oxygen sensors. J Biol Chem 293:11786–11795. https://doi.org/10.1074/jbc.RA118.003496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brown BA, Cloix C, Jiang GH et al (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci U S A 102:18225–18230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Christie JM, Arvai AS, Baxter KJ et al (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492–1496. https://doi.org/10.1126/science.1218091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kliebenstein DJ, Lim JE, Landry LG, Last RL (2002) Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol 130:234–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jung JH, Domijan M, Klose C et al (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889

    Article  CAS  PubMed  Google Scholar 

  79. Feng W, Kita D, Peaucelle A et al (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol 28:666–675. https://doi.org/10.1016/j.cub.2018.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu F, Chi Y, Jiang Z et al (2020) Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature 578:577–581. https://doi.org/10.1038/s41586-020-2032-3

    Article  CAS  PubMed  Google Scholar 

  81. Jung JH, Barbosa AD, Hutin S et al (2020) A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585:256–260

    Article  CAS  PubMed  Google Scholar 

  82. Dorone Y, Boeynaems S, Flores E et al (2021) A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell 184:4284–4298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants. Plant Cell 14:465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jiang Z, Zhou X, Tao M et al (2019) Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature 572:341–346

    Article  CAS  PubMed  Google Scholar 

  85. Chinnusamy V, Stevenson B, Lee BH, Zhu JK (2002) Screening for gene regulation mutants by bioluminescence imaging. Sci STKE 2002:pl10. https://doi.org/10.1126/stke.2002.140.pl10

    Article  PubMed  Google Scholar 

  86. Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942

    Article  PubMed  Google Scholar 

  87. Gao F, Han X, Wu J et al (2012) A heat-activated calcium-permeable channel - Arabidopsis cyclic nucleotide gated ion channel 6 - is involved in heat shock responses. Plant J 70:1056–1069

    Article  CAS  PubMed  Google Scholar 

  88. Ma Y, Dai X, Xu Y et al (2015) COLD1 confers chilling tolerance in rice. Cell 160:1209–1221

    Article  CAS  PubMed  Google Scholar 

  89. Miller G, Schlauch K, Tam R et al (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45. https://doi.org/10.1126/scisignal.2000448

    Article  PubMed  Google Scholar 

  90. Reyer A, Hässler M, Scherzer S et al (2020) Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps. Proc Natl Acad Sci U S A 117:20920–20925

    Google Scholar 

  91. Saidi Y, Finka A, Muriset M et al (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:2829–2843. https://doi.org/10.1105/tpc.108.065318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Choi WG, Miller G, Wallace I et al (2017) Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. Plant J 90:698–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rankenberg T, Geldhof B, van Veen H et al (2021) Age-dependent abiotic stress resilience in plants. Trends Plant Sci 26:692–705. https://doi.org/10.1016/j.tplants.2020.12.016

    Article  CAS  PubMed  Google Scholar 

  94. Hartman S, van Dongen N, Renneberg DMJH et al (2020) Ethylene differentially modulates hypoxia responses and tolerance across Solanum species. Plants (Basel) 9:1022

    Google Scholar 

  95. Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86. https://doi.org/10.1186/s12870-016-0771-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xia XJ, Zhou YH, Shi K et al (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856. https://doi.org/10.1093/jxb/erv089

    Article  CAS  PubMed  Google Scholar 

  97. Trewavas A (2003) Aspects of plant intelligence. Ann Bot 92:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Karpiński S, Szechyńska-Hebda M (2010) Secret life of plants: from memory to intelligence. Plant Signal Behav 5:1391–1394. https://doi.org/10.4161/psb.5.11.13243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Calvo P, Gagliano M, Souza GM, Trewavas A (2020) Plants are intelligent, here’s how. Ann Bot 125:11–28

    Article  PubMed  Google Scholar 

  100. Baluška F, Mancuso S (2020) Plants, climate and humans: plant intelligence changes everything. EMBO Rep 21:e50109

    Article  PubMed  PubMed Central  Google Scholar 

  101. Trewavas A (2021) Awareness and integrated information theory identify plant meristems as sites of conscious activity. Protoplasma 258:673–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chamovitz DA (2018) Plants are intelligent; now what ? Nat Plants 4:622–631

    Article  PubMed  Google Scholar 

  103. Robinson DG, Draguhn A, Taiz L (2020) Plant « intelligence » changes nothing. EMBO Rep 21:e50395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Krell T, Lacal J, Busch A et al (2010) Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol 64:539–559. https://doi.org/10.1146/annurev.micro.112408.134054

    Article  CAS  PubMed  Google Scholar 

  105. Welchen E, Gonzalez DH (2021) Breaking boundaries: exploring short- and long-distance mitochondrial signalling in plants. New Phytol 232:494–501. https://doi.org/10.1111/nph.17614

    Article  PubMed  Google Scholar 

  106. Fjelland R (2020) Why general artificial intelligence will not be realized. Humanit Soc Sci Commun 7:10. https://doi.org/10.1057/s41599-020-0494-4

    Article  Google Scholar 

  107. Laloi C, Havaux M (2015) Key players of singlet oxygen-induced cell death in plants. Front Plant Sci 6:39. https://doi.org/10.3389/fpls.2015.00039

    Article  PubMed  PubMed Central  Google Scholar 

  108. Melo JA, Ruvkun G (2012) Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell 149:452–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mor A, Koh E, Weiner L et al (2014) Singlet oxygen signatures are detected independent of light or chloroplasts in response to multiple stresses. Plant Physiol 165:249–261. https://doi.org/10.1104/pp.114.236380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Noctor G, Mhamdi A (2017) Climate change CO2, and defense: the metabolic, redox and signaling perspectives. Trends Plant Sci 22:857–870

    Article  CAS  PubMed  Google Scholar 

  111. Intergovernmental Panel on Climate Change (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK et al (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, pp 3–32

    Google Scholar 

  112. Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  113. You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092. https://doi.org/10.3389/fpls.2015.01092

    Article  PubMed  PubMed Central  Google Scholar 

  114. Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  115. Jin Z, Zhuang Q, Wang J et al (2017) The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2. Glob Chang Biol 23:2687–2704

    Article  PubMed  Google Scholar 

  116. Pareek A, Joshi R, Gupta KJ et al (2020) Sensing and signalling in plant stress responses: ensuring sustainable food security in a era of climate change. New Phytol 228:823–827

    Article  PubMed  Google Scholar 

  117. Duputié A, Rutschmann A, Ronce O, Chuine I (2015) Phenological plasticity will not help all species to adapt climate change. Glob Chang Biol 21:3062–3073

    Article  PubMed  Google Scholar 

  118. Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020. https://doi.org/10.1111/j.1461-0248.2005.00796.x

    Article  PubMed  Google Scholar 

  119. Munné-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19. https://doi.org/10.1104/pp.112.205690

    Article  CAS  PubMed  Google Scholar 

  120. Amtmann A, Bohnert HJ, Bressan RA (2005) Abiotic stress and plant genome evolution: search for new models. Plant Physiol 138:127–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bailey-Serres J, Parker JE, Ainsworth EA, Oldrody GED, Schroeder JI (2019) Genetic strategies for improving crop yields. Nature 575:109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Massel K, Godwin I, Hickey L (2021) Tunable crops are just a spray away. Nat Plants 7:102–103

    Article  PubMed  Google Scholar 

  123. Torti S, Schlesier R, Thümmler A et al (2021) Transient reprogramming of crop plants for agronomic performance. Nat Plants 7:159–171

    Article  CAS  PubMed  Google Scholar 

  124. Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459. https://doi.org/10.1093/jxb/erj027

    Article  CAS  PubMed  Google Scholar 

  125. Du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14. https://doi.org/10.1016/j.scienta.2015.09.021

    Article  CAS  Google Scholar 

  126. Othibeng K, Nephali L, Ramabulana AT et al (2021) A metabolic choreography of maize plants treated with a humic substance-based biostimulant under Normal and starved conditions. Metabolites 11:403. https://doi.org/10.3390/metabo11060403

  127. Foyer CH, Rasool B, Davey JW, Hancock RD (2016) Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. J Exp Bot 67:2025–2037. https://doi.org/10.1093/jxb/erw079

    Article  CAS  PubMed  Google Scholar 

  128. Nicotra AB, Atkin OK, Bonser SP et al (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692. https://doi.org/10.1016/j.tplants.2010.09.008

    Article  CAS  PubMed  Google Scholar 

  129. Tansey CJ, Hadfield JD, Phillimore AB (2017) Estimating the ability of plants to plastically track temperature-mediated shifts in the spring phenological optimum. Glob Chang Biol 23:3321–3334

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Couée .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Couée, I. (2023). Interplay of Methodology and Conceptualization in Plant Abiotic Stress Signaling. In: Couée, I. (eds) Plant Abiotic Stress Signaling. Methods in Molecular Biology, vol 2642. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3044-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3044-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3043-3

  • Online ISBN: 978-1-0716-3044-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics