Skip to main content

In Vivo Evaluation of Exon 51 Skipping in hDMD/Dmd-null Mice

  • Protocol
  • First Online:
Skeletal Muscle Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2640))

Abstract

Duchenne muscular dystrophy (DMD) is a fatal X-linked condition that affects 1 in 3500–6000 newborn boys a year. An out-of-frame mutation in the DMD gene typically causes the condition. Exon skipping therapy is an emerging approach that uses antisense oligonucleotides (ASOs), short synthetic DNA-like molecules that can splice out mutated or frame-disrupting mRNA fragments, to restore the reading frame. The restored reading frame will be in-frame and will produce a truncated, yet functional protein. ASOs called phosphorodiamidate morpholino oligomers (PMO), including eteplirsen, golodirsen, and viltolarsen, have recently been approved by the US Food and Drug Administration as the first ASO-based drugs for DMD. ASO-facilitated exon skipping has been extensively studied in animal models. An issue that arises with these models is that the DMD sequence differs from the human DMD sequence. A solution to this issue is to use double mutant hDMD/Dmd-null mice, which only carry the human DMD sequence and are null for the mouse Dmd sequence. Here, we describe intramuscular and intravenous injections of an ASO to skip exon 51 in hDMD/Dmd-null mice, and the evaluation of its efficacy in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moser H (1984) Duchenne muscular dystrophy: pathogenetic aspects and genetic prevention. Hum Genet 66:17–40. https://doi.org/10.1007/BF00275183

    Article  CAS  PubMed  Google Scholar 

  2. Hoffman EP, Brown RH, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928. https://doi.org/10.1016/0092-8674(87)90579-4

    Article  CAS  PubMed  Google Scholar 

  3. Cox GA, Cole NM, Matsumura K et al (1993) Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature 364:725–729. https://doi.org/10.1038/364725a0

    Article  CAS  PubMed  Google Scholar 

  4. Koenig M, Beggs AH, Moyer M et al (1989) The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 45:498–506

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Monaco AP, Bertelson CJ, Liechti-Gallati S et al (1988) An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2:90–95. https://doi.org/10.1016/0888-7543(88)90113-9

    Article  CAS  PubMed  Google Scholar 

  6. Di Fusco D, Dinallo V, Marafini I et al (2019) Antisense oligonucleotide: basic concepts and therapeutic application in inflammatory bowel disease. Front Pharmacol 10. https://doi.org/10.3389/fphar.2019.00305

  7. Brolin C, Shiraishi T (2011) Antisense mediated exon skipping therapy for Duchenne muscular dystrophy (DMD). Artif DNA PNA XNA 2:6–15. https://doi.org/10.4161/adna.2.1.15425

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yokota T, Duddy W, Echigoya Y et al (2012) Exon skipping for nonsense mutations in Duchenne muscular dystrophy: too many mutations, too few patients? Expert Opin Biol Ther 12:1141–1152. https://doi.org/10.1517/14712598.2012.693469

    Article  CAS  PubMed  Google Scholar 

  9. Lu QL, Rabinowitz A, Chen YC et al (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci 102:198–203. https://doi.org/10.1073/pnas.0406700102

    Article  CAS  PubMed  Google Scholar 

  10. Aoki Y, Nakamura A, Yokota T et al (2010) In-frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52–deficient mdx mouse. Mol Ther 18:1995–2005. https://doi.org/10.1038/mt.2010.186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wein N, Vulin A, Findlay AR et al (2017) Efficient skipping of single exon duplications in DMD patient-derived cell lines using an antisense oligonucleotide approach. J Neuromuscular Dis 4:199–207. https://doi.org/10.3233/JND-170233

    Article  Google Scholar 

  12. Maruyama R, Echigoya Y, Caluseriu O et al (2017) Systemic delivery of morpholinos to skip multiple exons in a dog model of Duchenne muscular dystrophy. Methods Mol Biol 1565:201–213

    Article  CAS  PubMed  Google Scholar 

  13. Dowling JJ (2016) Eteplirsen therapy for Duchenne muscular dystrophy: skipping to the front of the line. Nat Rev Neurol 12:675–676. https://doi.org/10.1038/nrneurol.2016.180

    Article  CAS  PubMed  Google Scholar 

  14. Lim KR, Maruyama R, Yokota T (2017) Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Design Dev Ther 11:533–545. https://doi.org/10.2147/DDDT.S97635

    Article  CAS  Google Scholar 

  15. Heo Y-A (2020) Golodirsen: first approval. Drugs 80:329–333. https://doi.org/10.1007/s40265-020-01267-2

    Article  PubMed  Google Scholar 

  16. Dhillon S (2020) Viltolarsen: first approval. Drugs 80:1027–1031. https://doi.org/10.1007/s40265-020-01339-3

    Article  CAS  PubMed  Google Scholar 

  17. U.S. Food and Drug Administration FDA Approves Targeted Treatment for Rare Duchenne Muscular Dystrophy Mutation. https://www.fda.gov/news-events/press-announcements/fda-approves-targeted-treatment-rare-duchenne-muscular-dystrophy-mutation. Accessed 24 Aug 2020

  18. Aartsma-Rus A, Corey DR (2020) The 10th oligonucleotide therapy approved: Golodirsen for Duchenne muscular dystrophy. Nucleic Acid Ther 30:67–70. https://doi.org/10.1089/nat.2020.0845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakamura A, Takeda S (2011) Mammalian models of Duchenne muscular dystrophy: pathological characteristics and therapeutic applications. J Biomed Biotechnol 2011:1–8. https://doi.org/10.1155/2011/184393

    Article  Google Scholar 

  20. McGreevy JW, Hakim CH, McIntosh MA et al (2015) Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 8:195–213. https://doi.org/10.1242/dmm.018424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bremmer-Bout M, Aartsma-Rus A, de Meijer EJ et al (2004) Targeted exon skipping in transgenic hDMD mice: a model for direct preclinical screening of human-specific antisense oligonucleotides. Mol Ther 10:232–240. https://doi.org/10.1016/j.ymthe.2004.05.031

    Article  CAS  PubMed  Google Scholar 

  22. Echigoya Y, Lim KRQ, Trieu N et al (2017) Quantitative antisense screening and optimization for exon 51 skipping in Duchenne muscular dystrophy. Mol Ther 25:2561–2572. https://doi.org/10.1016/j.ymthe.2017.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Young CS, Mokhonova E, Quinonez M et al (2017) Creation of a novel humanized dystrophic mouse model of Duchenne muscular dystrophy and application of a CRISPR/Cas9 gene editing therapy. J Neuromuscular Dis 4:139–145. https://doi.org/10.3233/JND-170218

    Article  Google Scholar 

  24. Veltrop M, van Vliet L, Hulsker M et al (2018) A dystrophic Duchenne mouse model for testing human antisense oligonucleotides. PLoS One 13:e0193289. https://doi.org/10.1371/journal.pone.0193289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lim KRQ, Nguyen Q, Dzierlega K et al (2020) CRISPR-generated animal models of duchenne muscular dystrophy. Genes (Basel) 11:342. https://doi.org/10.3390/genes11030342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aartsma-Rus A, Straub V, Hemmings R et al (2017) Development of exon skipping therapies for duchenne muscular dystrophy: a critical review and a perspective on the outstanding issues. Nucleic Acid Ther 27:251–259. https://doi.org/10.1089/nat.2017.0682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was funded by Alberta Innovates Summer Research Studentship Program, the Friends of Garrett Cumming Research Chair Fund, HM Toupin Neurological Science Research Chair Fund, Muscular Dystrophy Canada, Canadian Institutes of Health Research (CIHR) FDN 143251, the University of Alberta Faculty of Medicine and Dentistry, Alberta Innovates, and the Women and Children’s Health Research Institute (WCHRI) IG 2874.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Yokota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sheri, N., Yokota, T. (2023). In Vivo Evaluation of Exon 51 Skipping in hDMD/Dmd-null Mice. In: Asakura, A. (eds) Skeletal Muscle Stem Cells. Methods in Molecular Biology, vol 2640. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3036-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3036-5_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3035-8

  • Online ISBN: 978-1-0716-3036-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics