Skip to main content

In Vivo Investigation of Gene Function in Muscle Stem Cells by CRISPR/Cas9-Mediated Genome Editing

  • Protocol
  • First Online:
Skeletal Muscle Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2640))

  • 1166 Accesses

Abstract

Skeletal muscle satellite cells (SCs) are adult stem cells responsible for muscle development and injury-induced muscle regeneration. Functional elucidation of intrinsic regulatory factors governing SC activity is constrained partially by the technological limitations in editing SCs in vivo. Although the power of CRISPR/Cas9 in genome manipulation has been widely documented, its application in endogenous SCs remains largely untested. Our recent study generates a muscle-specific genome editing system leveraging the Cre-dependent Cas9 knockin mice and AAV9-mediated sgRNAs delivery, which allows gene disruption in SCs in vivo. Here, we illustrate the step-by-step procedure for achieving efficient editing using the above system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dumont NA, Wang YX, Rudnicki MA (2015) Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 142:1572–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tajbakhsh S (2009) Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med 266:372–389

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein JM, Tabebordbar M, Zhu K et al (2019) In situ modification of tissue stem and progenitor cell genomes. Cell Rep 27:1254–1264 e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Komor AC, Badran AH, Liu DR (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168:20–36

    Article  CAS  PubMed  Google Scholar 

  6. Long C, Amoasii L, Mireault AA et al (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351:400–403

    Article  CAS  PubMed  Google Scholar 

  7. Nelson CE, Hakim CH, Ousterout DG et al (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403–407

    Article  CAS  PubMed  Google Scholar 

  8. Nance ME, Shi R, Hakim CH et al (2019) AAV9 edits muscle stem cells in normal and dystrophic adult mice. Mol Ther 27:1568–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He L, Ding Y, Zhao Y et al (2021) CRISPR/Cas9/AAV9-mediated in vivo editing identifies MYC regulation of 3D genome in skeletal muscle stem cell. Stem Cell Reports 16: 2442–2458

    Google Scholar 

  10. Zhao Y, Zhou J, He L et al (2019) MyoD induced enhancer RNA interacts with hnRNPL to activate target gene transcription during myogenic differentiation. Nat Commun 10:5787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guo Y, VanDusen NJ, Zhang L et al (2017) Analysis of cardiac myocyte maturation using CASAAV, a platform for rapid dissection of cardiac myocyte gene function in vivo. Circ Res 120:1874–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haeussler M, Schönig K, Eckert H (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ran FA, Hsu PD, Wright J (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Yuan J, Chen F et al (2020) Long noncoding RNA SAM promotes myoblast proliferation through stabilizing Sugt1 and facilitating kinetochore assembly. Nat Commun 11:1–16

    Google Scholar 

  15. Zhu S, Li W, Liu J et al (2016) Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library. Nat Biotechnol 34:1279–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grieger JC, Choi VW, Samulski RJ (2006) Production and characterization of adeno-associated viral vectors. Nat Protoc 1:1412–1428

    Article  CAS  PubMed  Google Scholar 

  17. Kimura T, Ferran B, Tsukahara Y et al (2019) Production of adeno-associated virus vectors for in vitro and in vivo applications. Sci Rep 9:1–13

    Article  Google Scholar 

  18. Liu L, Cheung TH, Charville G et al (2015) Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting. Nat Protoc 10:1612–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo T, Feng YL, Xiao JJ et al (2018) Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Genome Biol 19:170

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aloisio GM, Nakada Y, Saatcioglu HD et al (2014) PAX7 expression defines germline stem cells in the adult testis. J Clin Invest 124:3929–3944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smits AH, Ziebell F, Joberty G et al (2019) Biological plasticity rescues target activity in CRISPR knock outs. Nat Methods 16:1087–1093

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huating Wang .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Table S1

Sequences of primers used in this protocol (DOCX 85 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

He, L., He, Z., Li, Y., Sun, H., Wang, H. (2023). In Vivo Investigation of Gene Function in Muscle Stem Cells by CRISPR/Cas9-Mediated Genome Editing. In: Asakura, A. (eds) Skeletal Muscle Stem Cells. Methods in Molecular Biology, vol 2640. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3036-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3036-5_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3035-8

  • Online ISBN: 978-1-0716-3036-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics