Skip to main content

Rapid Particle-Based Simulations of Cellular Signalling with the FLAME-Accelerated Signalling Tool (FaST) and GPUs

  • Protocol
  • First Online:
Computational Modeling of Signaling Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2634))

  • 606 Accesses

Abstract

Cellular signalling is a vital process in living organisms for coordinating highly diverse responses to various stimuli. Particle-based modelling excels in its ability to model complex features of cellular signalling pathways including stochasticity, spatial effects, and heterogeneity, thus improving our understanding of critical decision processes in biology. Yet, particle-based modelling is computationally prohibitive to implement. We recently developed FaST (FLAME-accelerated signalling tool), a software tool that harnesses the power of high-performance computation to reduce the computational burden of particle-based modelling. In particular, employing the unique massively parallel architecture of graphic processing units (GPUs) provided extreme speed ups of simulations by >650-fold. In this chapter, we provide a step-by-step walkthrough of how to use FaST to create GPU-accelerated simulations of a simple cellular signalling network. We further explore how the flexibility of FaST can be used to implement entirely customized simulations while still including the intrinsic speed up advantages of GPU-based parallelization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chuang H-Y, Hofree M, Ideker T (2010) A decade of systems biology. Annu Rev Cell Dev Biol 26:721–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372

    Article  CAS  PubMed  Google Scholar 

  3. Bray SSA, Bray D (2004) Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys Biol 1:137–151

    Article  PubMed  Google Scholar 

  4. Andrews SS (2017) Smoldyn: particle-based simulation with rule-based modeling, improved molecular interaction and a library interface. Bioinformatics 33:710–717

    Article  CAS  PubMed  Google Scholar 

  5. Slepoy SJP, Slepoy A (2005) Microbial cell modeling via reacting diffusive particles. J Phys Conf Ser 16:305–309

    Article  Google Scholar 

  6. Kerr R, Bartol T, Kaminsky B et al (2008) Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces. SIAM J Sci Comput 30:3126–3149

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pogson M, Holcombe M, Smallwood R, Qwarnstrom E (2008) Introducing spatial information into predictive NF-kappa B modelling – an agent-based approach. PLoS One 3:e2367

    Article  PubMed  PubMed Central  Google Scholar 

  8. Klann MT, Lapin A, Reuss M (2011) Agent-based simulation of reactions in the crowded and structured intracellular environment: Influence of mobility and location of the reactants. BMC Syst Biol 5(1):1–14

    Article  Google Scholar 

  9. Fullstone G, Guttà C, Beyer A, Rehm M (2020) The FLAME-accelerated signalling tool (FaST) for facile parallelisation of flexible agent-based models of cell signalling. NPJ Syst Biol Appl 6:10

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nenninger A, Mastroianni G, Mullineaux CW (2010) Size dependence of protein diffusion in the cytoplasm of Escherichia coli. J Bacteriol 192:4535–4540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schavemaker PE, Boersma AJ, Poolman B (2018) How important is protein diffusion in prokaryotes? Front Mol Biosci 5:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kalwarczyk T, Kwapiszewska K, Szczepanski K et al (2017) Apparent anomalous diffusion in the cytoplasm of human cells: the effect of probesn polydispersity. J Phys Chem B 121:9831–9837

    Article  CAS  PubMed  Google Scholar 

  13. Ramadurai S, Holt A, Krasnikov V et al (2009) Lateral diffusion of membrane proteins. J Am Chem Soc 131:12650–12656

    Article  CAS  PubMed  Google Scholar 

  14. Weiß K, Neef A, Van Q et al (2013) Quantifying the diffusion of membrane proteins and peptides in black lipid membranes with 2-focus fluorescence correlation spectroscopy. Biophys J 105:455–462

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin Fullstone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fullstone, G. (2023). Rapid Particle-Based Simulations of Cellular Signalling with the FLAME-Accelerated Signalling Tool (FaST) and GPUs. In: Nguyen, L.K. (eds) Computational Modeling of Signaling Networks. Methods in Molecular Biology, vol 2634. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3008-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3008-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3007-5

  • Online ISBN: 978-1-0716-3008-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics