Skip to main content

Floxing by Electroporating Single-Cell Embryos with Two CRISPR RNPs and Two ssODNs

  • Protocol
  • First Online:
Transgenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2631))

Abstract

Floxed alleles and Cre drivers are two components of most conditional knockout mouse models, which are not only important for studying a given gene in a tissue-specific manner, but also useful for functional analysis of various sized genomic regions. With the increased demand for floxed mouse models in biomedical research, reliable and economical creation of floxed alleles is clearly highly valuable yet remains challenging. Here we provide technical details on the method consisting of electroporating single-cell embryos with CRISPR RNPs and ssODNs, next-generation sequencing (NGS)-based genotyping, an in vitro Cre assay (recombination followed by PCR) for loxP phasing determination, and optional second round targeting of an indel in cis with one loxP insertion in embryos obtained via in vitro fertilization (IVF). As importantly, we present protocols for validation of gRNAs and ssODNs before electroporation of embryos, to confirm phasing of loxP and the indel to be retargeted in individual blastocysts and an alternative strategy to insert loxP sites sequentially. Together, we hope to help researchers reliably obtain floxed alleles in a predictable and timely manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265:103–106

    Article  CAS  PubMed  Google Scholar 

  2. Carroll D (2014) Genome engineering with targetable nucleases. Annu Rev Biochem 83:409–439

    Article  CAS  PubMed  Google Scholar 

  3. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bishop KA, Harrington A, Kouranova E et al (2016) CRISPR/Cas9-mediated insertion of loxP sites in the mouse dock7 gene provides an effective alternative to use of targeted embryonic stem cells. G3 6:2051–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pritchard CEJ, Kroese LJ, Huijbers IJ (2017) Direct generation of conditional alleles using CRISPR/Cas9 in mouse zygotes. Methods Mol Biol 1642:21–35

    Article  CAS  PubMed  Google Scholar 

  6. Hai L, Szwarc MM, Lanza DG, Heaney JD, Lydon JP (2019) Using CRISPR/Cas9 engineering to generate a mouse with a conditional knockout allele for the promyelocytic leukemia zinc finger transcription factor. Genesis 57:e23281

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gurumurthy CB, O’Brien AR, Quadros RM, Adams J, Alcaide P, Ayabe S (2019) Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Genome Biol 20:171

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sentmanat MF, White JM, Kouranova E, Cui X (2022) Highly reliable creation of floxed alleles by electroporating single-cell embryos. BMC Biol 20:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Quadros RM, Miura H, Harms DW et al (2017) Easi-CRISPR: a robust method for one- step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 18:92

    Article  PubMed  PubMed Central  Google Scholar 

  10. Miura H, Gurumurthy CB, Sato T, Sato M, Ohtsuka M (2015) CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Sci Rep 5:12799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bennett H, Aguilar-Martinez E, Adamson AD (2021) CRISPR-mediated knock-in in the mouse embryo using long single stranded DNA donors synthesised by biotinylated PCR. Methods 191:3–14

    Article  CAS  PubMed  Google Scholar 

  12. Qin W, Dion SL, Kutny PM et al (2015) Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200:423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen S, Lee B, Lee AY-F, Modzelewski AJ, He L (2016) Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem 291:14457–14467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang W, Kutny PM, Byers SL et al (2016) Delivery of Cas9 protein into mouse zygotes through a series of electroporation dramatically increases the efficiency of model creation. J Genet Genomics 43:319–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takeo T, Sztein J, Nakagata N (2019) The CARD method for mouse sperm cryopreservation and in vitro fertilization using frozen-thawed sperm. In: Liu C, Du Y (eds) Microinjection. Methods in molecular biology, vol 1874. Humana Press, New York, NY

    Google Scholar 

  18. Ostermeier GC, Wiles MV, Farley JS, Taft RA (2008) Conserving, distributing and managing genetically modified mouse lines by sperm cryopreservation. PLoS One 3(7):e2792

    Article  PubMed  PubMed Central  Google Scholar 

  19. Connelly JP, Pruett-Miller SM (2019) CRIS.py: a versatile and high-throughput analysis program for CRISPR-based genome editing. Sci Rep 9(1):4194

    Article  PubMed  PubMed Central  Google Scholar 

  20. UC Davis Mouse Biology Program (2018) Mouse rescue IVF using 70–100 μL of cryopreserved sperm. Available via https://mmrrc.ucdavis.edu/files/protocols/Cryo-IVF-protocol.pdf. Accessed 24 Mar 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxia Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wallace, M., White, J.M., Kouranova, E., Wang, Z.T., Cui, X. (2023). Floxing by Electroporating Single-Cell Embryos with Two CRISPR RNPs and Two ssODNs. In: Saunders, T.L. (eds) Transgenesis. Methods in Molecular Biology, vol 2631. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2990-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2990-1_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2989-5

  • Online ISBN: 978-1-0716-2990-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics