Skip to main content

Genetic and Molecular Quality Control of Genetically Engineered Mice

  • Protocol
  • First Online:
Transgenesis

Abstract

Genetically engineered mice are used as avatars to understand mammalian gene function and develop therapies for human disease. During genetic modification, unintended changes can occur, and these changes may result in misassigned gene-phenotype relationships leading to incorrect or incomplete experimental interpretations. The types of unintended changes that may occur depend on the allele type being made and the genetic engineering approach used. Here we broadly categorize allele types as deletions, insertions, base changes, and transgenes derived from engineered embryonic stem (ES) cells or edited mouse embryos. However, the methods we describe can be adapted to other allele types and engineering strategies. We describe the sources and consequ ences of common unintended changes and best practices for detecting both intended and unintended changes by screening and genetic and molecular quality control (QC) of chimeras, founders, and their progeny. Employing these practices, along with careful allele design and good colony management, will increase the chance that investigations using genetically engineered mice will produce high-quality reproducible results, to enable a robust understanding of gene function, human disease etiology, and therapeutic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gertsenstein M, Mianne J, Teboul L et al (2020) Targeted mutations in the mouse via embryonic stem cells. Methods Mol Biol 2066:59–82

    CAS  PubMed  Google Scholar 

  2. Gertsenstein M, Nutter LM, Reid T et al (2010) Efficient generation of germ line transmitting chimeras from C57BL/6N ES cells by aggregation with outbred host embryos. PLoS One 5:e11260

    PubMed  PubMed Central  Google Scholar 

  3. Gertsenstein M, Nutter LMJ (2018) Engineering point mutant and epitope-tagged alleles in mice using Cas9 RNA-guided nuclease. Curr Protoc Mouse Biol 8:28–53

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gertsenstein M, Nutter LMJ (2021) Production of knockout mouse lines with Cas9. Methods 191:32–43

    CAS  PubMed  Google Scholar 

  5. Quadros RM, Miura H, Harms DW et al (2017) Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 18:92

    PubMed  PubMed Central  Google Scholar 

  6. Abe T, Inoue KI, Furuta Y et al (2017) Pronuclear microinjection during S-phase increases the efficiency of CRISPR-Cas9-assisted knockin of large DNA donors in mouse zygotes. Cell Rep 31:107653

    Google Scholar 

  7. Gu B, Gertsenstein M, Posfai E (2020) Generation of large fragment knock-in mouse models by microinjecting into 2-cell stage embryos. Methods Mol Biol 2066:89–100

    CAS  PubMed  Google Scholar 

  8. Behringer RR, Gertsenstein M, Nagy K et al (2014) Manipulating the mouse embryo: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  9. Goodwin LO, Splinter E, Davis TL et al (2019) Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis. Genome Res 29:494–505

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Odeh H, Hagiwara N, Skynner M et al (2004) Characterization of two transgene insertional mutations at pirouette, a mouse deafness locus. Audiol Neurootol 9:303–914

    CAS  PubMed  Google Scholar 

  11. Garrick D, Fiering S, Martin DI et al (1998) Repeat-induced gene silencing in mammals. Nat Genet 18:56–59

    CAS  PubMed  Google Scholar 

  12. Liang Q, Conte N, Skarnes WC et al (2008) Extensive genomic copy number variation in embryonic stem cells. Proc Natl Acad Sci U S A 105:17453–17456

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Skarnes WC, Rosen B, West AP et al (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474:337–342

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ryder E, Gleeson D, Sethi D et al (2013) Molecular characterization of mutant mouse strains generated from the EUCOMM/KOMP-CSD ES cell resource. Mamm Genome 24:286–294

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Birling MC, Yoshiki A, Adams DJ et al (2021) A resource of targeted mutant mouse lines for 5,061 genes. Nat Genet 53:416–449

    CAS  PubMed  PubMed Central  Google Scholar 

  16. West DB, Engelhard EK, Adkisson M et al (2016) Transcriptome analysis of targeted mouse mutations reveals the topography of local changes in gene expression. PLoS Genet 12:e1005691

    PubMed  PubMed Central  Google Scholar 

  17. Paix A, Folkmann A, Goldman DH et al (2017) Precision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks. Proc Natl Acad Sci U S A 114:E10745–E10E54

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Boroviak K, Fu B, Yang F et al (2017) Revealing hidden complexities of genomic rearrangements generated with Cas9. Sci Rep 7:12867

    PubMed  PubMed Central  Google Scholar 

  19. Blayney J, Foster EM, Jagielowicz M et al (2020) Unexpectedly high levels of inverted re-insertions using paired sgRNAs for genomic deletions. Methods Protoc 3:53

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tuladhar R, Yeu Y, Tyler Piazza J et al (2019) CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation. Nat Commun 10:4056

    PubMed  PubMed Central  Google Scholar 

  21. Kim S, Kim D, Cho SW et al (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    PubMed  Google Scholar 

  23. Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    CAS  PubMed  Google Scholar 

  24. Gaj T, Gersbach CA, Barbas CF 3rd (2013) Zfn, talen, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen YG, Ciecko AE, Khaja S et al (2020) UBASH3A deficiency accelerates type 1 diabetes development and enhances salivary gland inflammation in nod mice. Sci Rep 10:12019

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Biagosch CA, Vidali S, Faerberboeck M et al (2021) A comprehensive phenotypic characterization of a whole-body Wdr45 knock-out mouse. Mamm Genome 35:332–349

    Google Scholar 

  27. Beverly SM (2001) Enzymatic amplification of RNA by PCR (RT-PCR). Curr Protoc Mol Biol Chapter 15:Unit 15.5

    CAS  PubMed  Google Scholar 

  28. Lindner L, Cayrou P, Rosahl TW et al (2021) Droplet digital PCR or quantitative PCR for in-depth genomic and functional validation of genetically altered rodents. Methods 191:107–119

    CAS  PubMed  Google Scholar 

  29. Adams NC, Gale NW (2006) High resolution gene expression analysis in mice using genetically inserted reporter genes. In: Pease S, Lois C (eds) Mammalian and avian transgenesis — new approaches. Principles and practice. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 131–172

    Google Scholar 

  30. Mead TJ, Apte SS (2020) Expression analysis by RNAScope™ in situ hybridization. In: Apte SS (ed) Adamts proteases: methods and protocols. Springer, New York, pp 173–178

    Google Scholar 

  31. Ni D, Xu P, Gallagher S (2016) Immunoblotting and immunodetection. Curr Protoc Mol Biol 114:8.10.1–8.10.36

    Google Scholar 

  32. Goldstein M, Watkins S (2008) Immunohistochemistry. Curr Protoc Mol Biol Chapter 14:Unit 14.6

    PubMed  Google Scholar 

  33. de Vree PJ, de Wit E, Yilmaz M et al (2014) Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat Biotechnol 32:1019–1025

    PubMed  Google Scholar 

  34. Cain-Hom C, Splinter E, van Min M et al (2017) Efficient mapping of transgene integration sites and local structural changes in cre transgenic mice using targeted locus amplification. Nucleic Acids Res 45:e62

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Codner GF, Erbs V, Loeffler J et al (2021) Universal Southern blot protocol with cold or radioactive probes for the validation of alleles obtained by homologous recombination. Methods 191:59–67

    CAS  PubMed  Google Scholar 

  36. Kapahnke M, Banning A, Tikkanen R (2016) Random splicing of several exons caused by a single base change in the target exon of CRISPR/Cas9 mediated gene knockout. Cell 5:45

    Google Scholar 

  37. Lalonde S, Stone OA, Lessard S et al (2017) Frameshift indels introduced by genome editing can lead to in-frame exon skipping. PLoS One 12:e0178700

    PubMed  PubMed Central  Google Scholar 

  38. Smits AH, Ziebell F, Joberty G et al (2019) Biological plasticity rescues target activity in CRISPR knock outs. Nat Methods 16:1087–1093

    CAS  PubMed  Google Scholar 

  39. Lindeboom RGH, Vermeulen M, Lehner B et al (2019) The impact of nonsense-mediated mRNA decay on genetic disease, gene editing and cancer immunotherapy. Nat Genet 51:1645–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghosh A, Chakrabarti R, Shukla PC (2021) Inadvertent nucleotide sequence alterations during mutagenesis: highlighting the vulnerabilities in mouse transgenic technology. J Genet Eng Biotechnol 19:30

    PubMed  PubMed Central  Google Scholar 

  41. Supek F, Lehner B, Lindeboom RGH (2021) To nmd or not to nmd: nonsense-mediated mRNA decay in cancer and other genetic diseases. Trends Genet 37:657–668

    CAS  PubMed  Google Scholar 

  42. Bradley A, Anastassiadis K, Ayadi A et al (2012) The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome 23:580–586

    PubMed  PubMed Central  Google Scholar 

  43. Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Modzelewski AJ, Chen S, Willis BJ et al (2018) Efficient mouse genome engineering by CRISPR-EZ technology. Nat Protoc 13:1253–1274

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim Y, Cheong SA, Lee JG et al (2016) Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol 34:808–810

    CAS  PubMed  Google Scholar 

  46. Hur JK, Kim K, Been KW et al (2016) Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol 34:807–808

    CAS  PubMed  Google Scholar 

  47. Iyer V, Shen B, Zhang W et al (2015) Off-target mutations are rare in Cas9-modified mice. Nat Methods 12:479

    CAS  PubMed  Google Scholar 

  48. Willi M, Smith HE, Wang C et al (2018) Mutation frequency is not increased in CRISPR-Cas9-edited mice. Nat Methods 15:756–758

    CAS  PubMed  Google Scholar 

  49. Anderson KR, Haeussler M, Watanabe C et al (2018) CRISPR off-target analysis in genetically engineered rats and mice. Nat Methods 15:512–514

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Peterson KA, Khalouei S, Woodd JA et al (2021) Whole genome analysis for 163 guide RNAs in Cas9 edited mice reveals minimal off-target activity. bioRxiv 2021.08.11.455876

    Google Scholar 

  51. Yang H, Wang H, Shivalila CS et al (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Allen F, Crepaldi L, Alsinet C et al (2019) Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nat Biotechnol 37:64–72

    CAS  Google Scholar 

  53. Hustedt N, Durocher D (2016) The control of DNA repair by the cell cycle. Nat Cell Biol 19:1–9

    PubMed  Google Scholar 

  54. Elrick H, Peterson KA, Wood JA et al (2021) The production of 4,182 mouse lines identifies experimental and biological variables impacting Cas9-mediated mutant mouse line production. bioRxiv. 2021:2021.10.06.463037

    Google Scholar 

  55. Eppig JT, Richardson JE, Kadin JA et al (2015) Mouse Genome Informatics (MGI): reflecting on 25 years. Mamm Genome 26:272–284

    PubMed  PubMed Central  Google Scholar 

  56. Tsherniak A, Vazquez F, Montgomery PG et al (2017) Defining a cancer dependency map. Cell 170:564–576

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Meyers RM, Bryan JG, McFarland JM et al (2017) Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet 49:1779–1784

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Karczewski KJ, Francioli LC, Tiao G et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:434–443

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Koscielny G, Yaikhom G, Iyer V et al (2014) The International Mouse Phenotyping Consortium web portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res 42(Database issue):D802–D809

    CAS  PubMed  Google Scholar 

  60. Peterson KA, Murray SA (2021) Progress towards completing the mutant mouse null resource. Mamm Genome 33:123–134

    PubMed  PubMed Central  Google Scholar 

  61. Birling MC, Fray MD, Kasparek P et al (2021) Importing genetically altered animals: ensuring quality. Mamm Genome 33:100–107

    PubMed  PubMed Central  Google Scholar 

  62. Bochkov YA, Palmenberg AC (2006) Translational efficiency of EMCV IRES in bicistronic vectors is dependent upon IRES sequence and gene location. BioTechniques 41:283–284, 6, 8 passim

    CAS  PubMed  Google Scholar 

  63. Kim JH, Lee SR, Li LH et al (2011) High cleavage efficiency of a 2a peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6:e18556

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tang W, Ehrlich I, Wolff SB et al (2009) Faithful expression of multiple proteins via 2a-peptide self-processing: a versatile and reliable method for manipulating brain circuits. J Neurosci 29:8621–8629

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Trichas G, Begbie J, Srinivas S (2008) Use of the viral 2a peptide for bicistronic expression in transgenic mice. BMC Biol 6:40

    PubMed  PubMed Central  Google Scholar 

  66. Chichili VPR, Kumar V, Sivaraman J (2013) Linkers in the structural biology of protein–protein interactions. Protein Sci 11:153–156

    Google Scholar 

  67. Klein JS, Jiang S, Galimidi RP et al (2014) Design and characterization of structured protein linkers with differing flexibilities. Protein Eng Des Sel 27:325–330

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71

    CAS  PubMed  Google Scholar 

  69. Soriano P, Friedrich G, Lawinger P (1991) Promoter interactions in retrovirus vectors introduced into fibroblasts and embryonic stem cells. J Virol 65:2314–2319

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zambrowicz BP, Imamoto A, Fiering S et al (1997) Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci U S A 94:3789–3794

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tasic B, Hippenmeyer S, Wang C et al (2011) Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc Natl Acad Sci U S A 108:7902–7907

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zeng H, Horie K, Madisen L et al (2008) An inducible and reversible mouse genetic rescue system. PLoS Genet 4:e1000069

    PubMed  PubMed Central  Google Scholar 

  73. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109

    CAS  PubMed  Google Scholar 

  74. Birling MC, Dierich A, Jacquot S et al (2012) Highly-efficient, fluorescent, locus directed Cre and Flpo deleter mice on a pure C57BL/6N genetic background. Genesis 50:482–489

    CAS  PubMed  Google Scholar 

  75. Wu Y, Wang C, Sun H et al (2009) High-efficient Flpo deleter mice in C57BL/6J background. PLoS One 4:e8054

    PubMed  PubMed Central  Google Scholar 

  76. Anastassiadis K, Fu J, Patsch C et al (2009) Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis Model Mech 2:508–515

    CAS  PubMed  Google Scholar 

  77. Han X, Zhang Z, He L et al (2021) A suite of new Dre recombinase drivers markedly expands the ability to perform intersectional genetic targeting. Cell Stem Cell 28:1160–76 e7

    CAS  PubMed  Google Scholar 

  78. Woods JP, Srinivasan RS, Olson L (2021) Sweet Dre-ams about intersectional genetics. Cell Stem Cell 28:989–990

    CAS  PubMed  Google Scholar 

  79. Gurumurthy CB, O’Brien AR, Quadros R et al (2019) Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Genome Biol 20:171

    PubMed  PubMed Central  Google Scholar 

  80. Shang R, Zhang H, Bi P (2021) Generation of mouse conditional knockout alleles in one step using the i-GONAD method. Genome Res 31:121–130

    PubMed  PubMed Central  Google Scholar 

  81. Lanza DG, Gaspero A, Lorenzo I et al (2018) Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biol 16:69

    PubMed  PubMed Central  Google Scholar 

  82. Mandalos N, Saridaki M, Harper JL et al (2012) Application of a novel strategy of engineering conditional alleles to a single exon gene, Sox2. PLoS One 7:e45768

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Guzzardo PM, Rashkova C, Dos Santos RL et al (2017) A small cassette enables conditional gene inactivation by CRISPR/Cas9. Sci Rep 7:16770

    PubMed  PubMed Central  Google Scholar 

  84. Gilet JG, Ivanova EL, Trofimova D et al (2020) Conditional switching of Kif2a mutation provides new insights into cortical malformation pathogeny. Hum Mol Genet 29:766–784

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Capulli M, Costantini R, Sonntag S et al (2019) Testing the Cre-mediated genetic switch for the generation of conditional knock-in mice. PLoS One 14:e0213660

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Heffner CS, Herbert Pratt C, Babiuk RP et al (2012) Supporting conditional mouse mutagenesis with a comprehensive Cre characterization resource. Nat Commun 3:1218

    PubMed  Google Scholar 

  87. Feil R, Brocard J, Mascrez B et al (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93:10887–10890

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Backman CM, Zhang Y, Malik N et al (2008) Generalized tetracycline induced Cre recombinase expression through the ROSA26 locus of recombinant mice. J Neurosci Methods 176:16–23

    PubMed  Google Scholar 

  89. Maani N, Sabha N, Rezai K et al (2018) Tamoxifen therapy in a murine model of myotubular myopathy. Nat Commun 9:4849

    PubMed  PubMed Central  Google Scholar 

  90. Nielsen KB, Sorensen S, Cartegni L et al (2007) Seemingly neutral polymorphic variants may confer immunity to splicing-inactivating mutations: a synonymous SNP in exon 5 of MCAD protects from deleterious mutations in a flanking exonic splicing enhancer. Am J Hum Genet 80:416–342

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Biro JC (2008) Correlation between nucleotide composition and folding energy of coding sequences with special attention to wobble bases. Theor Biol Med Model 5:14

    PubMed  PubMed Central  Google Scholar 

  92. Doktor TK, Schroder LD, Andersen HS et al (2014) Absence of an intron splicing silencer in porcine Smn1 intron 7 confers immunity to the exon skipping mutation in human Smn2. PLoS One 9:e98841

    PubMed  PubMed Central  Google Scholar 

  93. Suzuki M, Kasai K, Saeki Y (2006) Plasmid DNA sequences present in conventional herpes simplex virus amplicon vectors cause rapid transgene silencing by forming inactive chromatin. J Virol 80:3293–3300

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen ZY, He CY, Meuse L et al (2004) Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo. Gene Ther 11:856–864

    CAS  PubMed  Google Scholar 

  95. Lu J, Zhang F, Fire AZ et al (2017) Sequence-modified antibiotic resistance genes provide sustained plasmid-mediated transgene expression in mammals. Mol Ther 25:1187–1198

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Schaft J, Ashery-Padan R, van der Hoeven F et al (2001) Efficient Flp recombination in mouse ES cells and oocytes. Genesis 31:6–10

    CAS  PubMed  Google Scholar 

  97. Kvon EZ, Zhu Y, Kelman G et al (2020) Comprehensive in vivo interrogation reveals phenotypic impact of human enhancer variants. Cell 180:1262–1271

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chew SK, Rad R, Futreal PA et al (2011) Genetic screens using the piggyBac transposon. Methods 53:366–721

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Carlson DF, Geurts AM, Garbe JR et al (2010) Efficient mammalian germline transgenesis by cis-enhanced Sleeping Beauty transposition. Transgenic Res 20:29–45

    PubMed  PubMed Central  Google Scholar 

  100. Ikawa M, Tanaka N, Kao WW et al (2003) Generation of transgenic mice using lentiviral vectors: a novel preclinical assessment of lentiviral vectors for gene therapy. Mol Ther 8:666–673

    CAS  PubMed  Google Scholar 

  101. Russell WMS, Burch R (1959) The principles of humane experimental technique. Methuen, London

    Google Scholar 

  102. Dickinson ME, Flenniken AM, Ji X et al (2016) High-throughput discovery of novel developmental phenotypes. Nature 537:508–554

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Karp NA, Mason J, Beaudet AL et al (2017) Prevalence of sexual dimorphism in mammalian phenotypic traits. Nat Commun 8:15475

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Truett GE, Heeger P, Mynatt RL et al (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (hotshot). BioTechniques 29(52):54

    PubMed  Google Scholar 

  105. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  106. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3--new capabilities and interfaces. Nucleic Acids Res 40:e115

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Untergasser A, Nijveen H, Rao X et al (2007) Primer3plus, an enhanced web interface to primer3. Nucleic Acids Res 35(Web Server issue):W71–W74

    PubMed  PubMed Central  Google Scholar 

  108. Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-blast: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134

    CAS  PubMed  PubMed Central  Google Scholar 

  109. D’Haene B, Vandesompele J, Hellemans J (2010) Accurate and objective copy number profiling using real-time quantitative PCR. Methods 50:262–270

    PubMed  Google Scholar 

  110. Kanagal-Shamanna R (2016) Digital PCR: principles and applications. Methods Mol Biol 1392:43–50

    CAS  PubMed  Google Scholar 

  111. Conant D, Hsiau T, Rossi N et al (2012) Inference of CRISPR edits from Sanger trace data. CRISPR J 5:123–130

    Google Scholar 

  112. Bloh K, Kanchana R, Bialk P et al (2021) Deconvolution of complex DNA repair (DECODR): establishing a novel deconvolution algorithm for comprehensive analysis of CRISPR-edited Sanger sequencing data. CRISPR J 4:120–131

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Vaux DL (1992) Rapid recovery of DNA from agarose gels. Trends Genet 8:81

    CAS  PubMed  Google Scholar 

  114. Boyle JS, Lew AM (1995) An inexpensive alternative to glassmilk for DNA purification. Trends Genet 11:8

    CAS  PubMed  Google Scholar 

  115. Bortesi L, Zhu C, Zischewski J et al (2016) Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol J 14:2203–2216

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mianne J, Codner GF, Caulder A et al (2017) Analysing the outcome of CRISPR-aided genome editing in embryos: screening, genotyping and quality control. Methods 15:121–122

    Google Scholar 

  118. Gu B, Posfai E, Gertsenstein M et al (2020) Efficient generation of large-fragment knock-in mouse models using 2-cell (2c)-homologous recombination (HR)-CRISPR. Curr Protoc Mouse Biol 10:e67

    CAS  PubMed  Google Scholar 

  119. Mizuno N, Mizutani E, Sato H et al (2018) Intra-embryo gene cassette knockin by CRISPR/Cas9-mediated genome editing with adeno-associated viral vector. iScience 9:286–297

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Yoon Y, Wang D, Tai PWL et al (2018) Streamlined ex vivo and in vivo genome editing in mouse embryos using recombinant adeno-associated viruses. Nat Commun 9:412

    PubMed  PubMed Central  Google Scholar 

  121. Codner GF, Mianne J, Caulder A et al (2018) Application of long single-stranded DNA donors in genome editing: generation and validation of mouse mutants. BMC Biol 16:70

    PubMed  PubMed Central  Google Scholar 

  122. Cacheiro P, Munoz-Fuentes V, Murray SA et al (2020) Human and mouse essentiality screens as a resource for disease gene discovery. Nat Commun 11:655

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Austin CP, Battey JF, Bradley A et al (2004) The knockout mouse project. Nat Genet 36:921–924

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Pettitt SJ, Liang Q, Rairdan XY et al (2009) Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat Methods 6:493–495

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Lilue J, Doran AG, Fiddes IT et al (2018) Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nat Genet 50:1574–1583

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kim K, Kim H, Lee D (2009) Site-specific modification of genome with cell-permeable Cre fusion protein in preimplantation mouse embryo. Biochem Biophys Res Commun 388:122–126

    CAS  PubMed  Google Scholar 

  127. Ruf S, Symmons O, Uslu VV et al (2011) Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor. Nat Genet 43:379–386

    CAS  PubMed  Google Scholar 

  128. Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Listgarten J, Weinstein M, Kleinstiver BP et al (2018) Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nat Biomed Eng 2:38–47

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Uchimura A, Higuchi M, Minakuchi Y et al (2015) Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice. Genome Res 25:1125–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Taft RA, Davisson M, Wiles MV (2006) Know thy mouse. Trends Genet 22:649–653

    CAS  PubMed  Google Scholar 

  132. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang XH, Tee LY, Wang XG et al (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4:e264

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Andrews KR, Hunter SS, Torrevillas BK et al (2021) A new mouse SNP genotyping assay for speed congenics: combining flexibility, affordability, and power. BMC Genomics 22:378

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Visscher PM (1999) Speed congenics: accelerated genome recovery using genetic markers. Genet Res 74:81–85

    CAS  PubMed  Google Scholar 

  136. Wong GT (2002) Speed congenics: applications for transgenic and knock-out mouse strains. Neuropeptides 36:230–236

    CAS  PubMed  Google Scholar 

  137. Sigmon JS, Blanchard MW, Baric RS et al (2020) Content and performance of the miniMUGA genotyping array: a new tool to improve rigor and reproducibility in mouse research. Genetics 216:905–930

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Popp MW, Maquat LE (2014) The dharma of nonsense-mediated mRNA decay in mammalian cells. Mol Cells 37:1–8

    PubMed  PubMed Central  Google Scholar 

  139. Hoek TA, Khuperkar D, Lindeboom RGH et al (2019) Single-molecule imaging uncovers rules governing nonsense-mediated mRNA decay. Mol Cell 75:324–339

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Gilpatrick T, Lee I, Graham JE et al (2020) Targeted nanopore sequencing with Cas9-guided adapter ligation. Nat Biotechnol 38:433–438

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank their colleagues at The Centre for Phenogenomics for their assistance with implementing the assays described in this manuscript. The authors received salary support funding from Genome Canada and Ontario Genomics OGI-137 and the Canada Foundation for Innovation Major Science Initiatives (MSI) Fund 35534. Figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauryl M. J. Nutter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lintott, L.G., Nutter, L.M.J. (2023). Genetic and Molecular Quality Control of Genetically Engineered Mice. In: Saunders, T.L. (eds) Transgenesis. Methods in Molecular Biology, vol 2631. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2990-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2990-1_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2989-5

  • Online ISBN: 978-1-0716-2990-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics