Skip to main content

CRISPR/Cas9 Endonuclease-Mediated Mouse Genome Editing of One-Cell and/or Two-Cell Embryos by Electroporation, and the Use of Rad51 to Enhance Knock-In Allele Homozygosity via Interhomolog Repair Mechanism

  • Protocol
  • First Online:
Transgenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2631))

  • 1288 Accesses

Abstract

Electroporation of mouse embryos with CRISPR/Cas9 endonuclease tool is a facile and efficient method to edit endogenous genome sequences for generating genetically engineered mouse models (GEMMs). Common genome engineering projects, such as knock-out (KO), conditional knock-out (cKO), point mutation, and small foreign DNA (<1 Kb) knock-in (KI) alleles, can be effectively accomplished with a simple electroporation procedure. The use of electroporation in sequential gene editing at the one-cell (0.7 days post-coitum (dpc)) and at two-cell (1.5 dpc) embryonic stages provides a fast and compelling protocol to safely introduce multiple gene modifications on the same chromosome by limiting chromosomal fractures. In addition, the co-electroporation of the ribonucleoprotein (RNP) complex and single-stranded oligodeoxynucleotide (ssODN) donor DNA with the strand exchange protein Rad51 can significantly increase the number of homozygous founders. Here we describe a comprehensive guideline for mouse embryo electroporation to generate GEMMs and the implementation of Rad51 in RNP/ssODN complex EP medium protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hashimoto M, Takemoto T (2015) Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci Rep 5:11315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qin W et al (2015) Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200:423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen S et al (2016) Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem 291:14457–14467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sato M et al (2016) Nucleic acids delivery methods for genome editing in zygotes and embryos: the old the new and the old-new. Biol Direct 11:16

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang W et al (2016) Delivery of Cas9 protein into mouse zygotes through a series of electroporation dramatically increases the efficiency of model creation. J Genet Genomics 43:319–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Modzelewski AJ et al (2018) Efficient mouse genome engineering by CRISPR-EZ technology. Nat Protoc 13:1253–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilde JJ et al (2021) Efficient embryonic homozygous gene conversion via RAD51-enhanced interhomolog repair. Cell 184:3267–3280 e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miura H et al (2018) Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat Protoc 13:195–215

    Article  CAS  PubMed  Google Scholar 

  10. Miyasaka Y et al (2018) CLICK: one-step generation of conditional knockout mice. BMC Genomics 19:318

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yoon Y et al (2018) Streamlined ex vivo and in vivo genome editing in mouse embryos using recombinant adeno-associated viruses. Nat Commun 9:412

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen S et al (2019) CRISPR-READI: efficient generation of knockin mice by CRISPR RNP electroporation and AAV donor infection. Cell Rep 27(13):3780–3789. e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mizuno N et al (2018) Intra-embryo gene cassette knockin by CRISPR/Cas9-mediated genome editing with adeno-associated viral vector. iScience 9:286–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Horii T et al (2017) Efficient generation of conditional knockout mice via sequential introduction of lox sites. Sci Rep 7:7891

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gu B, Posfai E, Rossant J (2018) Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nat Biotechnol 36:632–637

    Article  CAS  PubMed  Google Scholar 

  16. Abe T et al (2020) Pronuclear microinjection during S-phase increases the efficiency of CRISPR-Cas9-assisted knockin of large DNA donors in mouse zygotes. Cell Rep 31:107653

    Article  CAS  PubMed  Google Scholar 

  17. Lanza DG et al (2018) Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biol 16:69

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hendel A et al (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33:985–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Slaymaker IM et al (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Thomas Saunders for kindly providing his feedback on this manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raehum Paik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Garza, S., Paik, R. (2023). CRISPR/Cas9 Endonuclease-Mediated Mouse Genome Editing of One-Cell and/or Two-Cell Embryos by Electroporation, and the Use of Rad51 to Enhance Knock-In Allele Homozygosity via Interhomolog Repair Mechanism. In: Saunders, T.L. (eds) Transgenesis. Methods in Molecular Biology, vol 2631. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2990-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2990-1_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2989-5

  • Online ISBN: 978-1-0716-2990-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics