Skip to main content

An Optimized Data-Independent Acquisition Strategy for Comprehensive Analysis of Human Plasma Proteome

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2628))

Abstract

Cartography of the plasma proteome remains technically challenging, primarily due to the abundance and dynamic range of plasma proteins and their concentrations, exceeding ten orders of magnitude, including low-abundant tissue-derived proteins in the pg/mL range. Data-independent acquisition mass spectrometry (DIA-MS) has seen advances in unbiased mass spectrometry-based proteomic analysis of the plasma proteome. Here, we describe a comprehensive proteomic workflow of human plasma from clinically relevant sample (10 μL) that includes anti-protein immunodepletion and highly sensitive sample preparation workflow, with optimized scheduled isolation DIA-MS and deep learning analysis. This approach results in over 960 proteins quantified from a single-shot analysis of broad dynamic range, across 8 orders of magnitude (8.2 ng/L to 0.67 g/L). We further compare data-dependent acquisition (DDA) MS to highlight the advantage in protein quantification and inter-sample variation. These developments have provided streamlined identification of the human plasma proteome, including low-abundant tissue-enriched proteins, and applications toward understanding the plasma proteome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Geyer PE, Holdt LM, Teupser D et al (2017) Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol 13:942

    Article  Google Scholar 

  2. Shishkova E, Coon JJ (2021) Rapid preparation of human blood plasma for bottom-up proteomics analysis. STAR Protoc 2:100856

    Article  CAS  Google Scholar 

  3. Messner CB, Demichev V, Wendisch D et al (2020) Ultra-high-throughput clinical proteomics reveals classifiers of COVID-19 infection. Cell Syst 11:11–24.e4

    Article  CAS  Google Scholar 

  4. Gautam SS, Singh RP, Karsauliya K et al (2022) Label-free plasma proteomics for the identification of the putative biomarkers of oral squamous cell carcinoma. J Proteome 259:104541

    Article  CAS  Google Scholar 

  5. Bauer W, Weber M, Diehl-Wiesenecker E et al (2021) Plasma proteome fingerprints reveal distinctiveness and clinical outcome of SARS-CoV-2 infection. Viruses 13:2456

    Article  CAS  Google Scholar 

  6. Gummesson A, Björnson E, Fagerberg L et al (2021) Longitudinal plasma protein profiling of newly diagnosed type 2 diabetes. EBioMedicine 63:103147

    Article  CAS  Google Scholar 

  7. Liu Y, Buil A, Collins BC et al (2015) Quantitative variability of 342 plasma proteins in a human twin population. Mol Syst Biol 11:786

    Article  Google Scholar 

  8. Keshishian H, Burgess MW, Specht H et al (2017) Quantitative, multiplexed workflow for deep analysis of human blood plasma and biomarker discovery by mass spectrometry. Nat Protoc 12:1683–1701

    Article  CAS  Google Scholar 

  9. Blume JE, Manning WC, Troiano G et al (2020) Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat Commun 11:1–14

    Article  Google Scholar 

  10. Park J, Kim H, Kim SY et al (2020) In-depth blood proteome profiling analysis revealed distinct functional characteristics of plasma proteins between severe and non-severe COVID-19 patients. Sci Rep 10:1–10

    Article  CAS  Google Scholar 

  11. Kimura Y, Yanagimachi M, Ino Y et al (2017) Identification of candidate diagnostic serum biomarkers for Kawasaki disease using proteomic analysis. Sci Rep 7:1–12

    Article  Google Scholar 

  12. Zhang S, Raedschelders K, Venkatraman V et al (2020) A dual workflow to improve the proteomic coverage in plasma using data-independent acquisition-MS. J Proteome Res 19:2828–2837

    Article  CAS  Google Scholar 

  13. Sato H, Inoue Y, Kawashima Y et al (2022) In-depth serum proteomics by DIA-MS with in silico spectral libraries reveals dynamics during the active phase of systemic juvenile idiopathic arthritis. ACS Omega 7:7012–7023

    Article  CAS  Google Scholar 

  14. Kimura Y, Nakai Y, Shin J et al (2021) Identification of serum prognostic biomarkers of severe COVID-19 using a quantitative proteomic approach. Sci Rep 11:1–9

    Article  Google Scholar 

  15. Bruderer R, Bernhardt OM, Gandhi T et al (2016) High-precision iRT prediction in the targeted analysis of data-independent acquisition and its impact on identification and quantitation. Proteomics 16:2246–2256

    Article  CAS  Google Scholar 

  16. Yang Y, Liu X, Shen C et al (2020) In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics. Nat Commun 11:1–11

    CAS  Google Scholar 

  17. Tran NH, Qiao R, Xin L et al (2019) Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry. Nat Methods 16:63–66

    Article  Google Scholar 

  18. Demichev V, Messner CB, Vernardis SI et al (2019) DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods 17:41–44

    Article  Google Scholar 

  19. Wichmann C, Meier F, Winter SV et al (2019) MaxQuant. Live enables global targeting of more than 25,000 peptides. Mol Cell Proteomics 18:982–994

    Article  CAS  Google Scholar 

  20. Hughes CS, Moggridge S, Müller T et al (2019) Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat Protoc 14:68–85

    Article  CAS  Google Scholar 

  21. Deutsch EW, Omenn GS, Sun Z et al (2021) Advances and utility of the human plasma proteome. J Proteome Res 20(12):5241–5263

    Google Scholar 

  22. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319

    Article  CAS  Google Scholar 

  23. Tyanova S, Cox J (2018) Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. Cancer Syst Biol 1711:133–148

    Article  CAS  Google Scholar 

  24. MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968

    Google Scholar 

  25. Kompa AR, Greening DW, Kong AM et al (2021) Sustained subcutaneous delivery of secretome of human cardiac stem cells promotes cardiac repair following myocardial infarction. Cardiovasc Res 117:918–929

    Article  CAS  Google Scholar 

  26. Claridge B, Rai A, Fang H et al (2021) Proteome characterisation of extracellular vesicles isolated from heart. Proteomics 21:2100026

    Article  CAS  Google Scholar 

  27. Rai A, Fang H, Claridge B et al (2021) Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform. J Extracell Vesicles 10:e12164

    Article  CAS  Google Scholar 

  28. Poh QH, Rai A, Carmichael II et al (2021) Proteome reprogramming of endometrial epithelial cells by human trophectodermal small extracellular vesicles reveals key insights into embryo implantation. Proteomics 21:2000210

    Article  CAS  Google Scholar 

  29. Rai A, Fang H, Fatmous M et al (2021) A protocol for isolation, purification, characterization, and functional dissection of exosomes. In: Methods in molecular biology. Humana Press Inc, pp 105–149

    Google Scholar 

  30. Kristensen K, Henriksen JR, Andresen TL (2015) Adsorption of cationic peptides to solid surfaces of glass and plastic. PLoS One 10:e0122419

    Article  Google Scholar 

  31. Goebel-Stengel M, Stengel A, Taché Y et al (2011) The importance of using the optimal plasticware and glassware in studies involving peptides. Anal Biochem 414:38–46

    Article  CAS  Google Scholar 

  32. Rosenberger G, Koh CC, Guo T et al (2014) A repository of assays to quantify 10,000 human proteins by SWATH-MS. Sci Data 1:1–15

    Article  Google Scholar 

  33. Pino LK, Just SC, MacCoss MJ et al (2020) Acquiring and analyzing data independent acquisition proteomics experiments without spectrum libraries. Mol Cell Proteomics 19:1088–1103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Greening .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fang, H., Greening, D.W. (2023). An Optimized Data-Independent Acquisition Strategy for Comprehensive Analysis of Human Plasma Proteome. In: Greening, D.W., Simpson, R.J. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 2628. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2978-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2978-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2977-2

  • Online ISBN: 978-1-0716-2978-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics