Skip to main content

Using Local Protein Model Quality Estimates to Guide a Molecular Dynamics-Based Refinement Strategy

  • Protocol
  • First Online:
Homology Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2627))

  • 526 Accesses

Abstract

The refinement of predicted 3D models aims to bring them closer to the native structure by fixing errors including unusual bonds and torsion angles and irregular hydrogen bonding patterns. Refinement approaches based on molecular dynamics (MD) simulations using different types of restraints have performed well since CASP10. ReFOLD, developed by the McGuffin group, was one of the many MD-based refinement approaches, which were tested in CASP 12. When the performance of the ReFOLD method in CASP12 was evaluated, it was observed that ReFOLD suffered from the absence of a reliable guidance mechanism to reach consistent improvement for the quality of predicted 3D models, particularly in the case of template-based modelling (TBM) targets. Therefore, here we propose to utilize the local quality assessment score produced by ModFOLD6 to guide the MD-based refinement approach to further increase the accuracy of the predicted 3D models. The relative performance of the new local quality assessment guided MD-based refinement protocol and the original MD-based protocol ReFOLD are compared utilizing many different official scoring methods. By using the per-residue accuracy (or local quality) score to guide the refinement process, we are able to prevent the refined models from undesired structural deviations, thereby leading to more consistent improvements. This chapter will include a detailed analysis of the performance of the local quality assessment guided MD-based protocol versus that deployed in the original ReFOLD method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGuffin LJ (2008) Protein fold recognition and threading. In: Computational structural biology: methods and applications. World Scientific, pp 37–60

    Chapter  Google Scholar 

  2. McGuffin LJ (2008) Aligning sequences to structures. In: Protein structure prediction. Humana Press, Totowa, pp 61–90

    Chapter  Google Scholar 

  3. Kendrew JC, Bodo G, Dintzis HM et al (1958) A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181:662–666. https://doi.org/10.1038/181662a0

    Article  CAS  Google Scholar 

  4. Perutz MF, Rossmann MG, Cullis AF et al (1960) Structure of Hæmoglobin: a three-dimensional Fourier synthesis at 5.5-Å. Resolution, obtained by X-Ray analysis. Nature 185:416–422. https://doi.org/10.1038/185416a0

    Article  CAS  Google Scholar 

  5. Drenth J (1999) Principles of protein X-ray crystallography. Springer

    Book  Google Scholar 

  6. Heinemann U, Frevert J, Hofman, KP et al (2002). Linking structural biology with genome research. In Genomics and proteomics, pp. 179–189. Springer, Boston, MA. https://doi.org/10.1007/0-306-46823-9_15

  7. Murata K, Wolf M (2018) Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochim Biophys Acta – Gen Subj 1862:324–334. https://doi.org/10.1016/J.BBAGEN.2017.07.020

    Article  CAS  Google Scholar 

  8. Jonic S, Vénien-Bryan C (2009) Protein structure determination by electron cryo-microscopy. Curr Opin Pharmacol 9:636–642. https://doi.org/10.1016/J.COPH.2009.04.006

    Article  CAS  Google Scholar 

  9. Brocchieri L, Karlin S (2005) Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res 33:3390–3400. https://doi.org/10.1093/nar/gki615

    Article  CAS  Google Scholar 

  10. Rangwala H, Karypis G (2010) Introduction to protein structure prediction: methods and algorithms. Wiley

    Book  Google Scholar 

  11. Roche D, Buenavista M, McGuffin L (2013) Predicting protein structures and structural annotation of proteomes. In: Roberts GCK (ed) Encylopedia of biophysics. Springer, pp 2061–2068. https://doi.org/10.1007/978-3-642-16712-6_418

    Chapter  Google Scholar 

  12. Moult J, Fidelis K, Zemla A, Hubbard T (2003) Critical assessment of methods of protein structure prediction (CASP)-round V. Proteins Struct Funct Genet 53:334–339. https://doi.org/10.1002/prot.10556

    Article  CAS  Google Scholar 

  13. Zhang Y, Skolnick J (2005) The protein structure prediction problem could be solved using the current PDB library. Proc Natl Acad Sci U S A 102:1029–1034. https://doi.org/10.1073/pnas.0407152101

    Article  CAS  Google Scholar 

  14. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:1–11. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  Google Scholar 

  15. Lee J, Wu S, Zhang Y (2009) Ab initio protein structure prediction. In: Rigden DJ (ed) From protein structure to function with bioinformatics. Springer, Dordrecht, pp 3–25

    Chapter  Google Scholar 

  16. Pavlopoulou A, Michalopoulos I (2011) State-of-the-art bioinformatics protein structure prediction tools (review). Int J Mol Med 28:295–310. https://doi.org/10.3892/ijmm.2011.705

    Article  CAS  Google Scholar 

  17. Senior AW, Evans R, Jumper J et al (2020) Improved protein structure prediction using potentials from deep learning. Nature 577:706–710. https://doi.org/10.1038/s41586-019-1923-7

    Article  CAS  Google Scholar 

  18. Roche BMT, Tetchner SJ, McGuffin LJ (2011) The IntFOLD server: an integrated web resource for protein fold recognition, 3D model quality assessment, intrinsic disorder prediction, domain prediction and ligand binding site prediction. Nucleic Acids Res 39:171–176. https://doi.org/10.1093/nar/gkr184

    Article  CAS  Google Scholar 

  19. McGuffin RDB (2011) Automated tertiary structure prediction with accurate local model quality assessment using the intfold-ts method. Proteins 79:137–146. https://doi.org/10.1002/prot.23120

    Article  Google Scholar 

  20. McGuffin LJ (2010) Model quality prediction. In: Introduction to protein structure prediction. John Wiley & Sons, Inc., Hoboken, pp 323–342

    Chapter  Google Scholar 

  21. Bhattacharya D, Cheng J (2013) 3Drefine: consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization. Proteins 81:119–131. https://doi.org/10.1002/prot.24167

    Article  CAS  Google Scholar 

  22. McGuffin LJ, Buenavista MT, Roche DB (2013) The ModFOLD4 server for the quality assessment of 3D protein models. Nucleic Acids Res 41:W368–W372. https://doi.org/10.1093/nar/gkt294

    Article  Google Scholar 

  23. McGuffin LJ, Roche DB (2010) Rapid model quality assessment for protein structure predictions using the comparison of multiple models without structural alignments. Bioinformatics 26:182–188. https://doi.org/10.1093/bioinformatics/btp629

    Article  CAS  Google Scholar 

  24. McGuffin LJ (2008) The ModFOLD server for the quality assessment of protein structural models. Bioinformatics 24:586–587. https://doi.org/10.1093/bioinformatics/btn014

    Article  CAS  Google Scholar 

  25. Roche DB, Tetchner SJ, McGuffin LJ (2010) The binding site distance test score: a robust method for the assessment of predicted protein binding sites. Bioinformatics 26:2920–2921. https://doi.org/10.1093/bioinformatics/btq543

    Article  CAS  Google Scholar 

  26. Bhattacharya D, Nowotny J, Cao R, Cheng J (2016) 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res 44:W406–W409. https://doi.org/10.1093/nar/gkw336

    Article  CAS  Google Scholar 

  27. McGuffin LJ (2009) Prediction of global and local model quality in CASP8 using the ModFOLD server. Proteins 77:185–190. https://doi.org/10.1002/prot.22491

    Article  CAS  Google Scholar 

  28. Maghrabi AHA, McGuffin LJ (2017) ModFOLD6: an accurate web server for the global and local quality estimation of 3D protein models. Nucleic Acids Res 45:W416–W421. https://doi.org/10.1093/nar/gkx332

    Article  CAS  Google Scholar 

  29. Jones DT, Singh T, Kosciolek T, Tetchner S (2015) MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics 31:999–1006. https://doi.org/10.1093/bioinformatics/btu791

    Article  CAS  Google Scholar 

  30. Buchan DWA, Minneci F, Nugent TCO et al (2013) Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res 41:W349–W357. https://doi.org/10.1093/nar/gkt381

    Article  Google Scholar 

  31. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637. https://doi.org/10.1002/bip.360221211

    Article  CAS  Google Scholar 

  32. Uziela K, Wallner B (2016) ProQ2: estimation of model accuracy implemented in Rosetta. Bioinformatics 32:1411–1413. https://doi.org/10.1093/bioinformatics/btv767

    Article  CAS  Google Scholar 

  33. Jones DT, Cozzetto D (2015) DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31:857–863. https://doi.org/10.1093/bioinformatics/btu744

    Article  CAS  Google Scholar 

  34. Adiyaman R, McGuffin LJ (2019) Methods for the refinement of protein structure 3D models. Int J Mol Sci 20:2301. https://doi.org/10.3390/ijms20092301

    Article  CAS  Google Scholar 

  35. Bonneau R, Tsai J, Ruczinski I, Baker D (2001) Functional inferences from blind ab initio protein structure predictions. J Struct Biol 134:186–190. https://doi.org/10.1006/JSBI.2000.4370

    Article  CAS  Google Scholar 

  36. Heo L, Feig M (2018) What makes it difficult to refine protein models further via molecular dynamics simulations? Proteins 86:177–188. https://doi.org/10.1002/prot.25393

    Article  CAS  Google Scholar 

  37. Moult J, Fidelis K, Kryshtafovych A et al (2016) Critical assessment of methods of protein structure prediction: progress and new directions in round XI. Proteins 84:4–14. https://doi.org/10.1002/prot.25064

    Article  CAS  Google Scholar 

  38. MacCallum JL, Hua L, Schnieders MJ et al (2009) Assessment of the protein-structure refinement category in CASP8. Proteins 77:66–80. https://doi.org/10.1002/prot.22538

    Article  CAS  Google Scholar 

  39. Hovan L, Oleinikovas V, Yalinca H et al (2018) Assessment of the model refinement category in CASP12. Proteins 86:152–167. https://doi.org/10.1002/prot.25409

    Article  CAS  Google Scholar 

  40. Bhattacharya D, Cheng J (2013) i3Drefine software for protein 3D structure refinement and its assessment in CASP10. PLoS One 8:e69648. https://doi.org/10.1371/journal.pone.0069648

    Article  CAS  Google Scholar 

  41. Khoury GA, Smadbeck J, Kieslich CA et al (2017) Princeton_TIGRESS 2.0: high refinement consistency and net gains through support vector machines and molecular dynamics in double-blind predictions during the CASP11 experiment. Proteins 85:1078–1098. https://doi.org/10.1002/prot.25274

    Article  CAS  Google Scholar 

  42. MacCallum JL, Pérez A, Schnieders MJ et al (2011) Assessment of protein structure refinement in CASP9. Proteins 79:74–90. https://doi.org/10.1002/prot.23131

    Article  Google Scholar 

  43. Meiler J, Baker D (2003) Rapid protein fold determination using unassigned NMR data. Proc Natl Acad Sci U S A 100:15404–15409. https://doi.org/10.1073/pnas.2434121100

    Article  CAS  Google Scholar 

  44. Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–395. https://doi.org/10.1124/pr.112.007336

    Article  CAS  Google Scholar 

  45. Feig M (2017) Computational protein structure refinement: almost there, yet still so far to go. Wiley Interdiscip Rev Comput Mol Sci 7:e1307. https://doi.org/10.1002/wcms.1307

    Article  CAS  Google Scholar 

  46. Nugent T, Cozzetto D, Jones DT (2014) Evaluation of predictions in the CASP10 model refinement category. Proteins 82:98–111. https://doi.org/10.1002/prot.24377

    Article  CAS  Google Scholar 

  47. Modi V, Dunbrack RL (2016) Assessment of refinement of template-based models in CASP11. Proteins 260–281:260. https://doi.org/10.1002/prot.25048

    Article  CAS  Google Scholar 

  48. Shuid AN, Kempster R, McGuffin LJ (2017) ReFOLD: a server for the refinement of 3D protein models guided by accurate quality estimates. Nucleic Acids Res 45:422–428. https://doi.org/10.1093/nar/gkx249

    Article  CAS  Google Scholar 

  49. Lu H, Skolnick J (2003) Application of statistical potentials to protein structure refinement from low resolutionab initio models. Biopolymers 70:575–584. https://doi.org/10.1002/bip.10537

    Article  CAS  Google Scholar 

  50. Misura KMSS, Baker D (2005) Progress and challenges in high-resolution refinement of protein structure models. Proteins Struct Funct Genet 59:15–29. https://doi.org/10.1002/prot.20376

    Article  CAS  Google Scholar 

  51. Arnautova YA, Jagielska A, Scheraga HA (2006) A new force field (ECEPP-05) for peptides, proteins, and organic molecules. J Phys Chem B 110:5025–5044. https://doi.org/10.1021/jp054994x

    Article  CAS  Google Scholar 

  52. Jagielska A, Wroblewska L, Skolnick J (2008) Protein model refinement using an optimized physics-based all-atom force field. Proc Natl Acad Sci U S A 105:8268–8273. https://doi.org/10.1073/pnas.0800054105

    Article  Google Scholar 

  53. Zhang Y (2009) Protein structure prediction: when is it useful? Curr Opin Struct Biol 19:145–155

    Article  CAS  Google Scholar 

  54. Han R, Leo-Macias A, Zerbino D et al (2008) An efficient conformational sampling method for homology modeling. Proteins 71:175–188. https://doi.org/10.1002/prot.21672

    Article  CAS  Google Scholar 

  55. Kim DE, Blum B, Bradley P, Baker D (2009) Sampling bottlenecks in De novo protein structure prediction. J Mol Biol 393:249–260. https://doi.org/10.1016/J.JMB.2009.07.063

    Article  Google Scholar 

  56. Leaver-Fay A, Tyka M, Lewis SM et al (2011) Rosetta3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574. https://doi.org/10.1016/B978-0-12-381270-4.00019-6

    Article  CAS  Google Scholar 

  57. Song Y, DiMaio F, Wang RY-R et al (2013) High-resolution comparative modeling with RosettaCM. Structure 21:1735–1742. https://doi.org/10.1016/j.str.2013.08.005

    Article  CAS  Google Scholar 

  58. Ovchinnikov S, Park H, Kim DE et al (2018) Protein structure prediction using Rosetta in CASP12. Proteins 86:113–121. https://doi.org/10.1002/prot.25390

    Article  CAS  Google Scholar 

  59. Lin MS, Head-Gordon T (2011) Reliable protein structure refinement using a physical energy function. J Comput Chem 32:709–717. https://doi.org/10.1002/jcc.21664

    Article  CAS  Google Scholar 

  60. Fan H, Mark AE (2004) Refinement of homology-based protein structures by molecular dynamics simulation techniques. Protein Sci 13:211–220. https://doi.org/10.1110/ps.03381404

    Article  CAS  Google Scholar 

  61. Chen B (2007) Can molecular dynamics simulations provide high-resolution refinement of protein structure? Proteins 67:922–930. https://doi.org/10.1002/prot.21345

    Article  CAS  Google Scholar 

  62. Summa CM, Levitt M (2007) Near-native structure refinement using in vacuo energy minimization. Proc Natl Acad Sci U S A 104:3177–3182. https://doi.org/10.1073/pnas.0611593104

    Article  CAS  Google Scholar 

  63. Ishitani R, Terada T, Shimizu K (2008) Refinement of comparative models of protein structure by using multicanonical molecular dynamics simulations. Mol Simul 34:327–336. https://doi.org/10.1080/08927020801930539

    Article  CAS  Google Scholar 

  64. Kannan S, Zacharias M (2010) Application of biasing-potential replica-exchange simulations for loop modeling and refinement of proteins in explicit solvent. Proteins 78:2809–2819. https://doi.org/10.1002/prot.22796

    Article  CAS  Google Scholar 

  65. Gront D, Kmiecik S, Blaszczyk M et al (2012) Optimization of protein models. Wiley Interdiscip Rev Comput Mol Sci 2:479–493. https://doi.org/10.1002/wcms.1090

    Article  CAS  Google Scholar 

  66. Lee MR, Tsai J, Baker D, Kollman PA (2001) Molecular dynamics in the endgame of protein structure prediction. J Mol Biol 313:417–430. https://doi.org/10.1006/JMBI.2001.5032

    Article  CAS  Google Scholar 

  67. Jones DT, Buchan DWA, Cozzetto D, Pontil M (2012) PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics 28:184–190. https://doi.org/10.1093/bioinformatics/btr638

    Article  CAS  Google Scholar 

  68. Heo L, Feig M (2018) Experimental accuracy in protein structure refinement via molecular dynamics simulations. Proc Natl Acad Sci U S A 115:13276–13281. https://doi.org/10.1073/pnas.1811364115

    Article  CAS  Google Scholar 

  69. Best RB, Buchete N-V, Hummer G (2008) Are current molecular dynamics force fields too helical? Biophys J 95:L07–L09. https://doi.org/10.1529/biophysj.108.132696

    Article  CAS  Google Scholar 

  70. Shaw DE, Maragakis P, Lindorff-Larsen K et al (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341–346. https://doi.org/10.1126/science.1187409

    Article  CAS  Google Scholar 

  71. Mirjalili V, Feig M (2013) Protein structure refinement through structure selection and averaging from molecular dynamics ensembles. J Chem Theory Comput 9:1294–1303. https://doi.org/10.1021/ct300962x

    Article  CAS  Google Scholar 

  72. Mirjalili V, Noyes K, Feig M (2014) Physics-based protein structure refinement through multiple molecular dynamics trajectories and structure averaging. Proteins 82:196–207. https://doi.org/10.1002/prot.24336

    Article  CAS  Google Scholar 

  73. MacKerell AD, Banavali N, Foloppe N (2001) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56:257–265

    Article  Google Scholar 

  74. Best RB, Zhu X, Shim J et al (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ 1 and χ 2 dihedral angles. J Chem Theory Comput 8:3257–3273. https://doi.org/10.1021/ct300400x

    Article  CAS  Google Scholar 

  75. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  Google Scholar 

  76. Cao W, Terada T, Nakamura S, Shimizu K (2003) Refinement of comparative-modeling structures by multicanonical molecular dynamics. Genome Inform 14:484–485. https://doi.org/10.11234/gi1990.14.484

    Article  Google Scholar 

  77. Park H, Seok C (2012) Refinement of unreliable local regions in template-based protein models. Proteins 80:1974–1986. https://doi.org/10.1002/prot.24086

    Article  CAS  Google Scholar 

  78. Park IH, Gangupomu V, Wagner J et al (2012) Structure refinement of protein low resolution models using the GNEIMO constrained dynamics method. J Phys Chem B 116:2365–2375. https://doi.org/10.1021/jp209657n

    Article  CAS  Google Scholar 

  79. Lee GR, Heo L, Seok C (2016) Effective protein model structure refinement by loop modeling and overall relaxation. Proteins 84:293–301. https://doi.org/10.1002/prot.24858

    Article  CAS  Google Scholar 

  80. Feig M, Mirjalili V (2016) Protein structure refinement via molecular-dynamics simulations: what works and what does not? Proteins 84(Suppl 1):282–292. https://doi.org/10.1002/prot.24871

    Article  CAS  Google Scholar 

  81. Zhang J, Liang Y, Zhang Y (2011) Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. Structure 19:1784–1795. https://doi.org/10.1016/J.STR.2011.09.022

    Article  CAS  Google Scholar 

  82. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  Google Scholar 

  83. Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Proteins 57:702–710. https://doi.org/10.1002/prot.20264

    Article  CAS  Google Scholar 

  84. Davis IW, Murray LW, Richardson JS, Richardson DC (2004) MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res 32:W615–W619. https://doi.org/10.1093/nar/gkh398

    Article  CAS  Google Scholar 

  85. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  86. Götz AW, Williamson MJ, Xu D et al (2012) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J Chem Theory Comput 8:1542–1555. https://doi.org/10.1021/ct200909j

    Article  CAS  Google Scholar 

  87. Loncharich RJ, Brooks BR, Pastor RW (1992) Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N′-methylamide. Biopolymers 32:523–535. https://doi.org/10.1002/bip.360320508

    Article  CAS  Google Scholar 

  88. Haas J, Barbato A, Behringer D et al (2018) Continuous Automated Model EvaluatiOn (CAMEO) complementing the critical assessment of structure prediction in CASP12. Proteins 86:387–398. https://doi.org/10.1002/prot.25431

    Article  CAS  Google Scholar 

  89. Adiyaman R, McGuffin LJ (2021) ReFOLD3: refinement of 3D protein models with gradual restraints based on predicted local quality and residue contacts. Nucleic Acids Res 49:W589–W596. https://doi.org/10.1093/NAR/GKAB300

    Article  CAS  Google Scholar 

  90. McGuffin LJ, Aldowsari FMF, Alharbi SMA, Adiyaman R (2021) ModFOLD8: accurate global and local quality estimates for 3D protein models. Nucleic Acids Res 49:W425–W430. https://doi.org/10.1093/NAR/GKAB321

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam J. McGuffin .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Adiyaman, R., McGuffin, L.J. (2023). Using Local Protein Model Quality Estimates to Guide a Molecular Dynamics-Based Refinement Strategy. In: Filipek, S. (eds) Homology Modeling. Methods in Molecular Biology, vol 2627. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2974-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2974-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2973-4

  • Online ISBN: 978-1-0716-2974-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics