Skip to main content

Live Imaging of Nurse Cell Behavior in Late Stages of Drosophila Oogenesis

  • Protocol
  • First Online:
Drosophila Oogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2626))

  • 817 Accesses

Abstract

Drosophila oogenesis is a powerful and tractable model for studies of cell and developmental biology due to the multitude of well-characterized events in both germline and somatic cells, the ease of genetic manipulation in fruit flies, and the large number of egg chambers produced by each fly. Recent improvements in live imaging and ex vivo culturing protocols have enabled researchers to conduct more detailed, longer-term studies of egg chamber development, enabling insights into fundamental biological processes. Here, we present a protocol for dissection, culturing, and imaging of late-stage egg chambers to study intercellular and directional cytoplasmic flow during “nurse cell dumping.” This critical developmental process towards the latter stages of oogenesis (stages 10b/11) results in rapid growth of the oocyte and shrinkage of the nurse cells and is accompanied by dynamic changes in cell shape. We also describe a procedure to record high-time-resolution movies of the flow of unlabeled cytoplasmic contents within nurse cells and through cytoplasmic bridges in the nurse cell cluster using reflection microscopy, and we describe two ways to analyze data from nurse cell dumping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spradling AC (1993) The developmental genetics of oogenesis. Cold Spring Harbor Laboratory Press, Plainview N.Y, pp 3–6

    Google Scholar 

  2. McLaughlin JM, Bratu D (2015) Drosophila melanogaster Oogenesis: An Overview. Methods Mol Biol 1328:1–20

    Article  CAS  Google Scholar 

  3. Morris LX, Spradling AC (2011) Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the Drosophila ovary. Development 138(11):2207–2215

    Article  CAS  Google Scholar 

  4. Haigo SL, Bilder D (2011) Global tissue revolutions in a morphogenetic movement controlling elongation. Science 331:1071–1074

    Article  CAS  Google Scholar 

  5. Cai D, Chen S-C, Prasad M et al (2014) Mechanical feedback through E-Cadherin promotes direction sensing during collective cell migration. Cell 157:1146–1159

    Article  CAS  Google Scholar 

  6. Osterfield M, Du X, Schüpbach T et al (2013) Three-dimensional epithelial morphogenesis in the developing Drosophila egg. Dev Cell 24(4):400–410

    Article  CAS  Google Scholar 

  7. Ganguly G, Williams LS, Palacios IM, Goldstein RE (2012) Cytoplasmic streaming in Drosophila oocytes varies with kinesin activity and correlates with the microtubule cytoskeleton architecture. Proc Nat Acad Sci 109(38):15109–15114

    Article  CAS  Google Scholar 

  8. Theurkauf WE (1994) Premature microtubule-dependent cytoplasmic streaming in cappuccino and spire mutant oocytes. Science 265(5181):2093–2096

    Article  CAS  Google Scholar 

  9. Lei L, Spradling AC (2016) Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells. Science 352(6281):95–99

    Article  CAS  Google Scholar 

  10. Gutzeit HO, Koppa R (1982) Time-lapse film analysis of cytoplasmic streaming during late oogenesis of Drosophila. J Embryol Exp Morph 67:101–111

    Google Scholar 

  11. Imran Alsous J, Romeo N, Jackson JA et al (2021) Dynamics of hydraulic and contractile wave-mediated fluid transport during Drosophila oogenesis. Proc Nat Acad Sci 118(10):e2019749118

    Article  Google Scholar 

  12. Mahajan-Miklos S, Cooley L (1994) Intercellular cytoplasm transport during Drosophila oogenesis. Dev Biol 165(2):336–351

    Article  CAS  Google Scholar 

  13. Peters NC, Berg C (2016) In vitro culturing and live imaging of Drosophila egg chambers: a history and adaptable method. Methods Mol Biol 1457:35–68

    Article  CAS  Google Scholar 

  14. Prasad M, Jang AC-C, Starz-Gaiano M et al (2007) A protocol for culturing Drosophila melanogaster stage 9 egg chambers for live imaging. Nat Protocols 2(10):2467–2473

    Article  CAS  Google Scholar 

  15. Wilcockson SG, Ashe HL (2021) Live imaging of the Drosophila ovarian germline stem cell niche. STAR Protocols 2(1):100371

    Article  CAS  Google Scholar 

  16. Cetera M, Lewellyn L, Horne-Badovinac S (2016) Cultivation and live imaging of Drosophila ovaries. Methods Mol Biol 1478:215–226

    Article  CAS  Google Scholar 

  17. Gáspár I, Szabad J (2009) In vivo analysis of MT-based vesicle transport by confocal reflection microscopy. Cell Motil Cytoskeleton 66(2):68–79

    Article  Google Scholar 

  18. Guggenheim EJ, Lynch I, Rappoport JZ (2017) Imaging in focus: reflected light imaging: techniques and applications. Int J Biochem Cell Biol 83:65–70

    Article  CAS  Google Scholar 

  19. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  Google Scholar 

  20. Jia D, Xu Q, Xie Q et al (2016) Automatic stage identification of Drosophila egg chamber based on DAPI images. Sci Reports 6:18850

    CAS  Google Scholar 

  21. Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34(1–2):1–15

    Article  CAS  Google Scholar 

  22. Martin AC, Gelbart M, Fernandez-Gonzalez R, Kaschube M, Wieschaus EF (2010) Integration of contractile forces during tissue invagination. J Cell Biol 188(5):735–749

    Article  CAS  Google Scholar 

  23. Oda H, Tsukita S (2001) Real-time imaging of cell–cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells. J Cell Sci 114:493–501

    Article  CAS  Google Scholar 

  24. Beaven R, Dzhindzhev NS, Qu Y et al (2015) Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system. Mol Biol Cell 26(8):1491–1508

    Article  CAS  Google Scholar 

  25. Minestrini G, Máthé E, Glover DM (2002) Domains of the Pavarotti kinesin-like protein that direct its subcellular distribution: effects of mislocalisation on the tubulin and actin cytoskeleton during Drosophila oogenesis. J Cell Sci 115:725–736

    Article  CAS  Google Scholar 

  26. Kisielewska J, Lu P, Whitaker M (2012) GFP-PCNA as an S-phase marker in embryos during the first and subsequent cell cycles. Biol Cell 97(3):221–229

    Article  Google Scholar 

  27. Imran Alsous J, Villoutreix P, Berezhkovskii AM, Shvartsman SY (2017) Collective growth in a small cell network. Curr Biol 27(17):2670–2676

    Article  CAS  Google Scholar 

  28. Thielicke W, Sonntag R (2021) Particle image velocimetry for MATLAB: accuracy and enhanced algorithms in PIVlab. J Open Res Softw 9:12

    Article  Google Scholar 

  29. Tseng Q https://sites.google.com/site/qingzongtseng/piv. Accessed 25 Feb 2022

Download references

Acknowledgments

This work was supported by NIH grant R01GM125646 to A.C.M. We would like to thank members of the Martin lab for helpful discussions regarding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam C. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jackson, J.A., Imran Alsous, J., Martin, A.C. (2023). Live Imaging of Nurse Cell Behavior in Late Stages of Drosophila Oogenesis. In: Giedt, M.S., Tootle, T.L. (eds) Drosophila Oogenesis. Methods in Molecular Biology, vol 2626. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2970-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2970-3_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2969-7

  • Online ISBN: 978-1-0716-2970-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics