Skip to main content

Employing Live-Cell Imaging to Study Motor-Mediated Transport

  • Protocol
  • First Online:
Dynein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2623))

Abstract

Microtubule-based transport is a highly regulated process, requiring kinesin and/or dynein motors, a multitude of motor-associated regulatory proteins including activating adaptors and scaffolding proteins, and microtubule tracks that also provide regulatory cues. While in vitro studies are invaluable, fully replicating the physiological conditions under which motility occurs in cells is not yet possible. Here, we describe two methods that can be employed to study motor-based transport and motor regulation in a cellular context. Live-cell imaging of organelle transport in neurons leverages the uniform polarity of microtubules in axons to better understand the factors regulating microtubule-based motility. Peroxisome recruitment assays allow users to examine the net effect of motors and motor-regulatory proteins on organelle distribution. Together, these methods open the door to motility experiments that more fully interrogate the complex cellular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cianfrocco MA, DeSantis ME, Leschziner AE et al (2015) Mechanism and regulation of cytoplasmic dynein. Annu Rev Cell Dev Biol 31:83–108

    Article  CAS  Google Scholar 

  2. Ali I, Yang W-C (2020) The functions of kinesin and kinesin-related proteins in eukaryotes. Cell Adh Migr 14:139–152

    Article  CAS  Google Scholar 

  3. Roll-Mecak A (2020) The tubulin code in microtubule dynamics and information encoding. Dev Cell 54:7–20

    Article  CAS  Google Scholar 

  4. Reck-Peterson SL, Redwine WB, Vale RD et al (2018) The cytoplasmic dynein transport machinery and its many cargoes. Nat Rev Mol Cell Biol 19(6):382–398

    Article  CAS  Google Scholar 

  5. Olenick MA, Holzbaur ELF (2019) Dynein activators and adaptors at a glance. J Cell Sci 132

    Google Scholar 

  6. Heidemann SR, Landers JM, Hamborg MA (1981) Polarity orientation of axonal microtubules. J Cell Biol 91:661–665

    Article  CAS  Google Scholar 

  7. Smith JJ, Aitchison JD (2013) Peroxisomes take shape. Nat Rev Mol Cell Biol 14:803–817

    Article  CAS  Google Scholar 

  8. Masucci EM, Relich PK, Ostap EM et al (2021) Cega: a single particle segmentation algorithm to identify moving particles in a noisy system. MBoC 32:931–941

    Article  CAS  Google Scholar 

  9. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  10. Mangeol P, Prevo B, Peterman EJG et al (2016) KymographClear and KymographDirect: two tools for the automated quantitative analysis of molecular and cellular dynamics using kymographs. MBoC 27:1948–1957

    Article  CAS  Google Scholar 

  11. Nirschl JJ, Holzbaur ELF KymoSuite: Please change to: Guedes-Dias P, Nirschl JJ, Abreu N, Tokito MK, Janke C, Magiera MM, Holzbaur EL (2019) Kinesin-3 responds to local microtubule dynamics to target synaptic cargo delivery to the presynapse. Curr Biol. 29:268–282

    Google Scholar 

  12. Jakobs MA, Dimitracopoulos A, Franze K (2019) KymoButler, a deep learning software for automated kymograph analysis. Elife 8:e42288

    Article  Google Scholar 

  13. Meberg PJ, Miller MW (2003) Culturing hippocampal and cortical neurons. Methods Cell Biol 71:111–127

    Article  Google Scholar 

  14. Cason SE, Carman PJ, Van Duyne C et al (2021) Sequential dynein effectors regulate axonal autophagosome motility in a maturation-dependent pathway. J Cell Biol 220

    Google Scholar 

  15. Thermo Fisher (2003) COS-7L cells. http://tools.thermofisher.com/content/sfs/manuals/3915.pdf

  16. Miura K (2010) Temporal color code. https://github.com/fiji/fiji/blob/master/plugins/Scripts/Image/Hyperstacks/Temporal-Color_Code.ijm

  17. Kapitein LC, Schlager MA, van der Zwan WA et al (2010) Probing intracellular motor protein activity using an inducible cargo trafficking assay. Biophys J 99:2143–2152

    Article  CAS  Google Scholar 

  18. Nakai J (1956) Dissociated dorsal root ganglia in tissue culture. Am J Anat 99:81–129

    Article  CAS  Google Scholar 

  19. Burkhardt JK, Echeverri CJ, Nilsson T et al (1997) Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol 139:469–484

    Article  CAS  Google Scholar 

  20. Ahmad FJ, He Y, Myers KA et al (2006) Effects of dynactin disruption and dynein depletion on axonal microtubules. Traffic 7:524–537

    Article  CAS  Google Scholar 

  21. van Spronsen M, Mikhaylova M, Lipka J et al (2013) TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77:485–502

    Article  Google Scholar 

  22. Moughamian AJ, Holzbaur ELF (2012) Dynactin is required for transport initiation from the distal axon. Neuron 74:331–343

    Article  CAS  Google Scholar 

  23. Moughamian AJ, Osborn GE, Lazarus JE et al (2013) Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport. J Neurosci 33:13190–13203

    Article  CAS  Google Scholar 

  24. Ballister ER, Ayloo S, Chenoweth DM et al (2015) Optogenetic control of organelle transport using a photocaged chemical inducer of dimerization. Curr Biol 25:R407–R408

    Article  CAS  Google Scholar 

  25. Olenick MA, Tokito M, Boczkowska M et al (2016) Hook adaptors induce unidirectional processive motility by enhancing the dynein-dynactin interaction. J Biol Chem 291:18239–18251

    Article  CAS  Google Scholar 

  26. Rivera VM, Berk L, Clackson T (2012) Dimerizer-mediated regulation of gene expression in vivo. Cold Spring Harb Protoc 2012:pdb.prot070144

    Article  Google Scholar 

  27. Aonbangkhen C, Zhang H, Wu DZ et al (2018) Reversible photochemical control of protein localization in living cells using a photocaged-photocleavable dimerizer. J Am Chem Soc 140:11926–11930

    Article  CAS  Google Scholar 

  28. Klinman E, Holzbaur ELF (2016) Comparative analysis of axonal transport markers in primary mammalian neurons. Methods Cell Biol 131:409–424

    Article  Google Scholar 

  29. Cason S (2021) FIJI Kymograph generating macro. https://github.com/sydneyecason/HolzbaurLabWork/blob/master/AxonKymographGeneration.ijm

  30. Cason S (2021) Excel template for Kymograph Analysis. https://github.com/sydneyecason/HolzbaurLabWork/blob/master/Template_kymographAnalysis.xlsx

Download references

Acknowledgments

We thank Mariko Tokito, Chantell Evans, and Claire VanDuyne for technical assistance. This research was supported by NSF Graduate Research Fellowship (DGE-1845298) to S.E.C., NIH grant T32 GM008216 to A.R.F., and R35 GM126950 and RM1 GM136511 to E.L.F.H. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika L. F. Holzbaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cason, S.E., Fenton, A.R., Holzbaur, E.L.F. (2023). Employing Live-Cell Imaging to Study Motor-Mediated Transport. In: Markus, S.M. (eds) Dynein. Methods in Molecular Biology, vol 2623. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2958-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2958-1_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2957-4

  • Online ISBN: 978-1-0716-2958-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics