Skip to main content

LT-RPA: An Isothermal DNA Amplification Approach for Improved Microsatellite Genotyping and Microsatellite Instability Detection

  • Protocol
  • First Online:
Clinical Applications of Nucleic Acid Amplification

Abstract

Microsatellites are short tandem repeats of one to six nucleotides that are highly polymorphic and extensively used as genetic markers in numerous biomedical applications, including the detection of microsatellite instability (MSI) in cancer. The standard analytical method for microsatellite analysis relies on PCR amplification followed by capillary electrophoresis or, more recently, next-generation sequencing (NGS). However, their amplification during PCR generates undesirable frameshift products known as stutter peaks caused by polymerase slippage, complicating data analysis and interpretation, while very few alternative methods for microsatellite amplification have been developed to reduce the formation of these artifacts. In this context, the recently developed low-temperature recombinase polymerase amplification (LT-RPA) is an isothermal DNA amplification method at low temperature (32 °C) that drastically reduces and sometimes completely abolishes the formation of stutter peaks. LT-RPA greatly simplifies the genotyping of microsatellites and improves the detection of MSI in cancer. In this chapter, we describe in detail all the experimental steps necessary for the development of LT-RPA simplex and multiplex assays for microsatellite genotyping and MSI detection, including the design, optimization, and validation of the assays combined with capillary electrophoresis or NGS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 23 June 2023

    A correction has been published.

References

  1. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5(6):435–445. https://doi.org/10.1038/nrg1348

    Article  CAS  PubMed  Google Scholar 

  2. Gulcher J (2012) Microsatellite markers for linkage and association studies. Cold Spring Harb Protoc 2012(4):425–432. https://doi.org/10.1101/pdb.top068510

    Article  PubMed  Google Scholar 

  3. Putman AI, Carbone I (2014) Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol 4(22):4399–4428. https://doi.org/10.1002/ece3.1305

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stadele V, Vigilant L (2016) Strategies for determining kinship in wild populations using genetic data. Ecol Evol 6(17):6107–6120. https://doi.org/10.1002/ece3.2346

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam KN, Latif MA (2013) A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int J Mol Sci 14(11):22499–22528. https://doi.org/10.3390/ijms141122499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gettings KB, Aponte RA, Vallone PM, Butler JM (2015) STR allele sequence variation: current knowledge and future issues. Forensic Sci Int Genet 18:118–130. https://doi.org/10.1016/j.fsigen.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  7. Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138(6):2073–2087. e2073. https://doi.org/10.1053/j.gastro.2009.12.064

    Article  CAS  PubMed  Google Scholar 

  8. Mirkin SM (2007) Expandable DNA repeats and human disease. Nature 447(7147):932–940. https://doi.org/10.1038/nature05977

    Article  CAS  PubMed  Google Scholar 

  9. Hause RJ, Pritchard CC, Shendure J, Salipante SJ (2016) Classification and characterization of microsatellite instability across 18 cancer types. Nat Med 22(11):1342–1350. https://doi.org/10.1038/nm.4191

    Article  CAS  PubMed  Google Scholar 

  10. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R, Hamilton SR, Hiatt RA, Jass J, Lindblom A, Lynch HT, Peltomaki P, Ramsey SD, Rodriguez-Bigas MA, Vasen HF, Hawk ET, Barrett JC, Freedman AN, Srivastava S (2004) Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96(4):261–268

    Article  CAS  PubMed  Google Scholar 

  11. Wimmer K, Kratz CP, Vasen HF, Caron O, Colas C, Entz-Werle N, Gerdes AM, Goldberg Y, Ilencikova D, Muleris M, Duval A, Lavoine N, Ruiz-Ponte C, Slavc I, Burkhardt B, Brugieres L (2014) Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium ‘care for CMMRD’ (C4CMMRD). J Med Genet 51(6):355–365. https://doi.org/10.1136/jmedgenet-2014-102284

    Article  CAS  PubMed  Google Scholar 

  12. Zeinalian M, Hashemzadeh-Chaleshtori M, Salehi R, Emami MH (2018) Clinical aspects of microsatellite instability testing in colorectal cancer. Adv Biomed Res 7:28. https://doi.org/10.4103/abr.abr_185_16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, Wong F, Azad NS, Rucki AA, Laheru D, Donehower R, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Greten TF, Duffy AG, Ciombor KK, Eyring AD, Lam BH, Joe A, Kang SP, Holdhoff M, Danilova L, Cope L, Meyer C, Zhou S, Goldberg RM, Armstrong DK, Bever KM, Fader AN, Taube J, Housseau F, Spetzler D, Xiao N, Pardoll DM, Papadopoulos N, Kinzler KW, Eshleman JR, Vogelstein B, Anders RA, Diaz LA Jr (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413. https://doi.org/10.1126/science.aan6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang S, Niu Y, Bian Y, Dong R, Liu X, Bao Y, Jin C, Zheng H, Li C (2018) Sequence investigation of 34 forensic autosomal STRs with massively parallel sequencing. Sci Rep 8(1):6810. https://doi.org/10.1038/s41598-018-24495-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Waalkes A, Smith N, Penewit K, Hempelmann J, Konnick EQ, Hause RJ, Pritchard CC, Salipante SJ (2018) Accurate pan-cancer molecular diagnosis of microsatellite instability by single-molecule molecular inversion probe capture and high-throughput sequencing. Clin Chem 64(6):950–958. https://doi.org/10.1373/clinchem.2017.285981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baudrin LG, Deleuze JF, How-Kit A (2018) Molecular and computational methods for the detection of microsatellite instability in cancer. Front Oncol 8:621. https://doi.org/10.3389/fonc.2018.00621

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hauge XY, Litt M (1993) A study of the origin of ‘shadow bands’ seen when typing dinucleotide repeat polymorphisms by the PCR. Hum Mol Genet 2(4):411–415

    Article  CAS  PubMed  Google Scholar 

  18. Murray V, Monchawin C, England PR (1993) The determination of the sequences present in the shadow bands of a dinucleotide repeat PCR. Nucleic Acids Res 21(10):2395–2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gill P, Haned H, Bleka O, Hansson O, Dorum G, Egeland T (2015) Genotyping and interpretation of STR-DNA: low-template, mixtures and database matches-twenty years of research and development. Forensic Sci Int Genet 18:100–117. https://doi.org/10.1016/j.fsigen.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  20. How-Kit A, Daunay A, Buhard O, Meiller C, Sahbatou M, Collura A, Duval A, Deleuze JF (2018) Major improvement in the detection of microsatellite instability in colorectal cancer using HSP110 T17 E-ice-COLD-PCR. Hum Mutat 39(3):441–453. https://doi.org/10.1002/humu.23379

    Article  CAS  PubMed  Google Scholar 

  21. Bright JA, Taylor D, Curran JM, Buckleton JS (2013) Developing allelic and stutter peak height models for a continuous method of DNA interpretation. Forensic Sci Int Genet 7(2):296–304. https://doi.org/10.1016/j.fsigen.2012.11.013

    Article  CAS  PubMed  Google Scholar 

  22. Coble MD, Bright JA (2019) Probabilistic genotyping software: an overview. Forensic Sci Int Genet 38:219–224. https://doi.org/10.1016/j.fsigen.2018.11.009

    Article  CAS  PubMed  Google Scholar 

  23. Salipante SJ, Scroggins SM, Hampel HL, Turner EH, Pritchard CC (2014) Microsatellite instability detection by next generation sequencing. Clin Chem 60(9):1192–1199. https://doi.org/10.1373/clinchem.2014.223677

    Article  CAS  PubMed  Google Scholar 

  24. Daunay A, Duval A, Baudrin LG, Buhard O, Renault V, Deleuze JF, How-Kit A (2019) Low temperature isothermal amplification of microsatellites drastically reduces stutter artifact formation and improves microsatellite instability detection in cancer. Nucleic Acids Res 47:e141. https://doi.org/10.1093/nar/gkz811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Daher RK, Stewart G, Boissinot M, Bergeron MG (2016) Recombinase polymerase amplification for diagnostic applications. Clin Chem 62(7):947–958. https://doi.org/10.1373/clinchem.2015.245829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4(7):e204. https://doi.org/10.1371/journal.pbio.0040204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hite JM, Eckert KA, Cheng KC (1996) Factors affecting fidelity of DNA synthesis during PCR amplification of d(C-A)n.d(G-T)n microsatellite repeats. Nucleic Acids Res 24(12):2429–2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dorard C, de Thonel A, Collura A, Marisa L, Svrcek M, Lagrange A, Jego G, Wanherdrick K, Joly AL, Buhard O, Gobbo J, Penard-Lacronique V, Zouali H, Tubacher E, Kirzin S, Selves J, Milano G, Etienne-Grimaldi MC, Bengrine-Lefevre L, Louvet C, Tournigand C, Lefevre JH, Parc Y, Tiret E, Flejou JF, Gaub MP, Garrido C, Duval A (2011) Expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis. Nat Med 17(10):1283–1289. https://doi.org/10.1038/nm.2457

    Article  CAS  PubMed  Google Scholar 

  29. Buhard O, Lagrange A, Guilloux A, Colas C, Chouchene M, Wanherdrick K, Coulet F, Guillerm E, Dorard C, Marisa L, Bokhari A, Greene M, El-Murr N, Bodo S, Muleris M, Sourouille I, Svrcek M, Cervera P, Blanche H, Lefevre JH, Parc Y, Lepage C, Chapusot C, Bouvier AM, Gaub MP, Selves J, Garrett K, Iacopetta B, Soong R, Hamelin R, Garrido C, Lascols O, Andre T, Flejou JF, Collura A, Duval A (2016) HSP110 T17 simplifies and improves the microsatellite instability testing in patients with colorectal cancer. J Med Genet 53(6):377–384. https://doi.org/10.1136/jmedgenet-2015-103518

    Article  CAS  PubMed  Google Scholar 

  30. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289–1291. https://doi.org/10.1093/bioinformatics/btm091

    Article  CAS  PubMed  Google Scholar 

  31. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3--new capabilities and interfaces. Nucleic Acids Res 40(15):e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. How-Kit A, Tost J (2015) Pyrosequencing(R)-based identification of low-frequency mutations enriched through enhanced-ice-COLD-PCR. Methods Mol Biol 1315:83–101. https://doi.org/10.1007/978-1-4939-2715-9_7

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We want to thank Steven McGinn (CNRGH) for his careful editing of the manuscript and improvement of the English. This work has been supported by the Fondation ARC pour la recherche sur le cancer (PJA 20191209442). LMH received support from the GENMED Laboratory of Excellence on Medical Genomics [ANR-10-LABX-0013]. SIJ and VR contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre How-Kit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jeanjean, S.I. et al. (2023). LT-RPA: An Isothermal DNA Amplification Approach for Improved Microsatellite Genotyping and Microsatellite Instability Detection. In: Myers, M.B., Schandl, C.A. (eds) Clinical Applications of Nucleic Acid Amplification. Methods in Molecular Biology, vol 2621. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2950-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2950-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2949-9

  • Online ISBN: 978-1-0716-2950-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics