Skip to main content

Assessing Depression and Cognitive Impairment Following Stroke and Neurotrauma: Behavioral Methods for Quantifying Impairment and Functional Recovery

  • Protocol
  • First Online:
Neural Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2616))

  • 1220 Accesses

Abstract

Rodent models of stroke and neural injury are reliable and useful tools for testing new interventions and therapeutics. In addition to physical (motor) impairment, cognitive deficits and depressive behaviors are often observed due to neurotrauma. Proper experimental design of pre- and post-assessments of these behaviors that reduce or minimize the confounding effects of motor impairment are essential for determining markers of progression of impairment or recovery. This chapter provides step-by-step laboratory protocols for assessing cognition using the Barnes maze and the novel object recognition test (NORT) and depressive-like behaviors using the sucrose preference test, the three-chambered sociability approach test, and the burrowing test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D’Souza CE, Greenway MRF, Graff-Radford J, Meschia JF (2021) Cognitive impairment in patients with stroke. Semin Neurol 41(01):075–084

    Article  Google Scholar 

  2. Kalaria RN, Akinyemi R, Ihara M (2016) Stroke injury, cognitive impairment and vascular dementia. Biochim Biophys Acta (BBA) – Mol Basis Dis 1862(5):915–925. https://doi.org/10.1016/j.bbadis.2016.01.015

    Article  CAS  Google Scholar 

  3. Mijajlović MD et al (2017) Post-stroke dementia – a comprehensive review. BMC Med 15(1):11. https://doi.org/10.1186/s12916-017-0779-7

    Article  CAS  Google Scholar 

  4. Craig A, Guest R, Tran Y, Middleton J (2016) Cognitive impairment and mood states after spinal cord injury. J Neurotrauma 34(6):1156–1163. https://doi.org/10.1089/neu.2016.4632

    Article  Google Scholar 

  5. Sachdeva R, Gao F, Chan CCH, Krassioukov AV (2018) Cognitive function after spinal cord injury: a systematic review. Neurology 91(13):611–621. https://doi.org/10.1212/wnl.0000000000006244

    Article  Google Scholar 

  6. Craig A et al (2015) Prospective study of the occurrence of psychological disorders and comorbidities after spinal cord injury. Arch Phys Med Rehabil 96(8):1426–1434. https://doi.org/10.1016/j.apmr.2015.02.027

    Article  Google Scholar 

  7. Li Y et al (2020) Dementia, depression, and associated brain inflammatory mechanisms after spinal cord injury. Cells 9(6):1420. https://doi.org/10.3390/cells9061420

    Article  CAS  Google Scholar 

  8. Das J, Rajanikant GK (2018) Post stroke depression: the sequelae of cerebral stroke. Neurosci Biobehav Rev 90:104–114. https://doi.org/10.1016/j.neubiorev.2018.04.005

    Article  Google Scholar 

  9. Panta A et al (2020) Mir363-3p treatment attenuates long-term cognitive deficits precipitated by an ischemic stroke in middle-aged female rats. Front Aging Neurosci 12(310). https://doi.org/10.3389/fnagi.2020.586362

  10. Panta A, Pandey S, Duncan IN, Duhamel S, Sohrabji F (2019) Mir363-3p attenuates post-stroke depressive-like behaviors in middle-aged female rats. Brain Behav Immun 78:31–40. https://doi.org/10.1016/j.bbi.2019.01.003

    Article  CAS  Google Scholar 

  11. Koh MT, Branch A, Haberman R, Gallagher M (2020) Significance of inhibitory recruitment in aging with preserved cognition: limiting gamma-aminobutyric acid type A α5 function produces memory impairment. Neurobiol Aging 91:1–4. https://doi.org/10.1016/j.neurobiolaging.2020.02.019

    Article  CAS  Google Scholar 

  12. Bondi CO et al (2014) Found in translation: understanding the biology and behavior of experimental traumatic brain injury. Neurosci Biobehav Rev 58:123–146

    Article  Google Scholar 

  13. Brakel K, Hook MA (2019) SCI and depression: does inflammation commandeer the brain? Exp Neurol 320:112977. https://doi.org/10.1016/j.expneurol.2019.112977

    Article  Google Scholar 

  14. Deacon R (2012) Assessing burrowing, nest construction, and hoarding in mice. J Vis Exp: JoVE 59:e2607–e2607. https://doi.org/10.3791/2607

    Article  Google Scholar 

  15. Deacon RM (2006) Burrowing in rodents: a sensitive method for detecting behavioral dysfunction. Nat Protoc 1(1):118–121. https://doi.org/10.1038/nprot.2006.19

    Article  CAS  Google Scholar 

  16. Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 215(2):244–254. https://doi.org/10.1016/j.bbr.2009.12.036

    Article  CAS  Google Scholar 

  17. Patil SS, Sunyer B, Höger H, Lubec G (2009) Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris water maze. Behav Brain Res 198(1):58–68. https://doi.org/10.1016/j.bbr.2008.10.029

    Article  Google Scholar 

  18. Rosenfeld CS, Ferguson SA (2014) Barnes maze testing strategies with small and large rodent models. J Vis Exp 84:e51194. https://doi.org/10.3791/51194

    Article  Google Scholar 

  19. Locklear MN, Kritzer MF (2014) Assessment of the effects of sex and sex hormones on spatial cognition in adult rats using the Barnes maze. Horm Behav 66(2):298–308. https://doi.org/10.1016/j.yhbeh.2014.06.006

    Article  CAS  Google Scholar 

  20. Illouz T et al (2016) Unbiased classification of spatial strategies in the Barnes maze. Bioinformatics 32(21):3314–3320. https://doi.org/10.1093/bioinformatics/btw376

    Article  CAS  Google Scholar 

  21. Woolf CJ (1983) Evidence for a central component of post-injury pain hypersensitivity. Nature 306(5944):686–688. https://doi.org/10.1038/306686a0

    Article  CAS  Google Scholar 

  22. Selvamani A, Williams MH, Miranda RC, Sohrabji F (2014) Circulating miRNA profiles provide a biomarker for severity of stroke outcomes associated with age and sex in a rat model. Clin Sci (Lond) 127(2):77–89. https://doi.org/10.1042/cs20130565

    Article  CAS  Google Scholar 

  23. O’Leary TP, Brown RE (2013) Optimization of apparatus design and behavioral measures for the assessment of visuo-spatial learning and memory of mice on the Barnes maze. Learn Mem 20(2):85–96. https://doi.org/10.1101/lm.028076.112

    Article  Google Scholar 

  24. Inui-Yamamoto C et al (2017) Taste preference changes throughout different life stages in male rats. PLoS One 12(7):e0181650. https://doi.org/10.1371/journal.pone.0181650

    Article  CAS  Google Scholar 

  25. Cousins MS, Atherton A, Turner L, Salamone JD (1996) Nucleus accumbens dopamine depletions alter relative response allocation in a T-maze cost/benefit task. Behav Brain Res 74(1–2):189–197. https://doi.org/10.1016/0166-4328(95)00151-4

    Article  CAS  Google Scholar 

  26. Andrews N et al (2012) Spontaneous burrowing behaviour in the rat is reduced by peripheral nerve injury or inflammation associated pain. Eur J Pain 16(4):485–495. https://doi.org/10.1016/j.ejpain.2011.07.012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Neuroscience and Experimental Therapeutics (NExT) behavior core for aging and injury studies at Texas A & M Health and Science Center College of Medicine. Support for the work was provided from the Alzheimer’s Association AARFD-16-440750 to KS, Mission Connect, a project of the TIRR foundation, and the Craig H. Neilsen Foundation to MH, and NIH AG042189 and the Janell and Joe Marek ‘57 Alzheimer’s Disease Research Fund to FS. KS, Director of the Behavioral Core, is partially supported by this Fund. KS is also known as Karienn Montgomery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farida Sohrabji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

de Souza, K.A., Hook, M., Sohrabji, F. (2023). Assessing Depression and Cognitive Impairment Following Stroke and Neurotrauma: Behavioral Methods for Quantifying Impairment and Functional Recovery. In: Karamyan, V.T., Stowe, A.M. (eds) Neural Repair. Methods in Molecular Biology, vol 2616. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2926-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2926-0_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2925-3

  • Online ISBN: 978-1-0716-2926-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics