Skip to main content

A CRISPR Platform for Targeted In Vivo Screens

  • Protocol
  • First Online:
The Tumor Microenvironment

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2614))

Abstract

Large-scale genetic screens are becoming increasingly used as powerful tools to query the genome to identify therapeutic targets in cancer. The advent of the CRISPR technology has revolutionized the effectiveness of these screens and has made it possible to carry out loss-of-function screens to identify cancer-specific genetic interactions. Such loss-of-function screens can be performed in silico, in vitro, and in vivo, depending on the scale of the screen, as well as research questions to be answered. Performing screens in vivo has its challenges but also advantages, providing opportunities to study the tumor microenvironment and cancer immunity. In this chapter, we present a procedural framework and associated notes for conducting in vivo CRISPR knockout screens in cancer models to study cancer biology, anti-tumor immune responses, tumor microenvironment, and predicting treatment responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hart T, Brown KR, Sircoulomb F et al (2014) Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol Syst Biol 10:733

    Article  Google Scholar 

  2. Castells-Roca L, Tejero E, Rodríguez-Santiago B et al (2021) CRISPR screens in synthetic lethality and combinatorial therapies for cancer. Cancers (Basel) 13:1591

    Article  CAS  Google Scholar 

  3. Wang T, Birsoy K, Hughes NW et al (2015) Identification and characterization of essential genes in the human genome. Science 350:1096–1101

    Article  CAS  Google Scholar 

  4. Iorio F, Behan FM, Gonçalves E et al (2018) Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting. BMC Genomics 19:604

    Article  Google Scholar 

  5. Wang W, Malyutina A, Pessia A et al (2019) Combined gene essentiality scoring improves the prediction of cancer dependency maps. EBioMedicine 50:67–80

    Article  CAS  Google Scholar 

  6. Shalem O, Sanjana NE, Hartenian E et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87

    Article  CAS  Google Scholar 

  7. Wang T, Wei JJ, Sabatini DM et al (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84

    Article  CAS  Google Scholar 

  8. Zhou Y, Zhu S, Cai C et al (2014) High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509:487–491

    Article  CAS  Google Scholar 

  9. Koike-Yusa H, Li Y, Tan E-P et al (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32:267–273

    Article  CAS  Google Scholar 

  10. Chafe SC, Vizeacoumar FS, Venkateswaran G et al (2021) Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors. Sci Adv 7:eabj0364

    Article  CAS  Google Scholar 

  11. Cunningham CE, MacAuley MJ, Yadav G et al (2019) Targeting the CINful genome: strategies to overcome tumor heterogeneity. Prog Biophys Mol Biol 147:77–91

    Article  CAS  Google Scholar 

  12. Parameswaran S, Kundapur D, Vizeacoumar FS et al (2019) A road map to personalizing targeted cancer therapies using synthetic lethality. Trends Cancer 5:11–29

    Article  CAS  Google Scholar 

  13. Paul JM, Templeton SD, Baharani A et al (2014) Building high-resolution synthetic lethal networks: a ‘Google map’ of the cancer cell. Trends Mol Med 20:704–715

    Article  CAS  Google Scholar 

  14. Kryukov GV, Wilson FH, Ruth JR et al (2016) MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351:1214–1218

    Article  CAS  Google Scholar 

  15. Kirzinger MWB, Vizeacoumar FS, Haave B et al (2019) Humanized yeast genetic interaction mapping predicts synthetic lethal interactions of FBXW7 in breast cancer. BMC Med Genomics 12:112

    Article  Google Scholar 

  16. McManus KJ, Barrett IJ, Nouhi Y et al (2009) Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. Proc Natl Acad Sci U S A 106:3276–3281

    Article  CAS  Google Scholar 

  17. MacAuley MJ, Abuhussein O, Vizeacoumar FS (2021) Identification of synthetic lethal interactions using high-throughput, arrayed CRISPR/Cas9-based platforms. Methods Mol Biol 2381:135–149

    Article  Google Scholar 

  18. Liu D, Zhao X, Tang A et al (1874) CRISPR screen in mechanism and target discovery for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2020:188378

    Google Scholar 

  19. Manguso RT, Pope HW, Zimmer MD et al (2017) In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547:413–418

    Article  CAS  Google Scholar 

  20. Schaefer C, Mallela N, Seggewiß J et al (2018) Target discovery screens using pooled shRNA libraries and next-generation sequencing: a model workflow and analytical algorithm. PLoS One 13:e0191570

    Article  Google Scholar 

  21. Dahn ML, Marcato P (2021) In vivo genome-wide pooled RNAi screens in cancer cells to identify determinants of chemotherapy/drug response. In: Vizeacoumar FJ, Freywald A (eds) Mapping genetic interactions. Springer, New York, pp 189–200

    Chapter  Google Scholar 

  22. Giuliano CJ, Lin A, Girish V et al (2019) Generating single cell–derived knockout clones in mammalian cells with CRISPR/Cas9. Curr Protoc Mol Biol 128:e100

    Article  Google Scholar 

  23. Colic M, Hart T (2021) Common computational tools for analyzing CRISPR screens. Emerg Top Life Sci 5:779–788

    Article  CAS  Google Scholar 

  24. Li W, Xu H, Xiao T et al (2014) MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol 15:554

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by operating grants from Saskatchewan Cancer Agency and Canadian Foundation for Innovation (CFI-33364) to F.J.V. and Be Like Bruce Foundation and College of Medicine funding, University of Saskatchewan to F.J.V and A.F. Figures were drawn using an image bundle purchased from Motifolio.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew Freywald or Franco J. Vizeacoumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maranda, V., Zhang, Y., Vizeacoumar, F.S., Freywald, A., Vizeacoumar, F.J. (2023). A CRISPR Platform for Targeted In Vivo Screens. In: Ursini-Siegel, J. (eds) The Tumor Microenvironment. Methods in Molecular Biology, vol 2614. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2914-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2914-7_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2913-0

  • Online ISBN: 978-1-0716-2914-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics