Skip to main content

3D Hydrogel Cultures for High-Throughput Drug Discovery

  • Protocol
  • First Online:
The Tumor Microenvironment

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2614))

  • 1540 Accesses

Abstract

Our increased understanding of how a cell’s microenvironment influences its behavior has fueled an interest in three-dimensional (3D) cell cultures for drug discovery. Particularly, scaffold-based 3D cultures are expected to recapitulate in vivo tissue stiffness and extracellular matrix composition more accurately than standard two-dimensional (2D) monolayer cultures. Here we present a 3D hydrogel cell culture setup suitable for automated screening with standard high-throughput screening (HTS) liquid handling equipment commonly found in a drug discovery laboratory. Further, we describe the steps required to validate the assay system for compound screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langhans SA (2021) Using 3D in vitro cell culture models in anti-cancer drug discovery. Expert Opin Drug Discov 16:841–850

    Article  CAS  Google Scholar 

  2. Brancato V, Oliveira JM, Correlo VM et al (2020) Could 3D models of cancer enhance drug screening? Biomaterials 232:119744

    Article  CAS  Google Scholar 

  3. Langhans SA (2018) Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 9:6

    Article  Google Scholar 

  4. LeSavage BL, Suhar RA, Broguiere N et al (2022) Next-generation cancer organoids. Nat Mater 21:143–159

    Article  CAS  Google Scholar 

  5. Ma C, Peng Y, Li H et al (2021) Organ-on-a-chip: a new paradigm for drug development. Trends Pharmacol Sci 42:119–133

    Article  Google Scholar 

  6. Worthington P, Drake KM, Li Z et al (2017) Beta-hairpin hydrogels as scaffolds for high-throughput drug discovery in three-dimensional cell culture. Anal Biochem 535:25–34

    Article  CAS  Google Scholar 

  7. Worthington P, Drake KM, Li Z et al (2019) Implementation of a high-throughput pilot screen in peptide hydrogel-based three-dimensional cell cultures. SLAS Discov 24:714–723

    Article  CAS  Google Scholar 

  8. Haines-Butterick L, Rajagopal K, Branco M et al (2007) Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc Natl Acad Sci U S A 104:7791–7796

    Article  CAS  Google Scholar 

  9. Haines-Butterick LA, Salick DA, Pochan DJ et al (2008) In vitro assessment of the pro-inflammatory potential of beta-hairpin peptide hydrogels. Biomaterials 29:4164–4169

    Article  CAS  Google Scholar 

  10. Yan C, Mackay ME, Czymmek K et al (2012) Injectable solid peptide hydrogel as a cell carrier: effects of shear flow on hydrogels and cell payload. Langmuir 28:6076–6087

    Article  CAS  Google Scholar 

  11. Lindsey S, Piatt JH, Worthington P et al (2015) Beta hairpin peptide hydrogels as an injectable solid vehicle for neurotrophic growth factor delivery. Biomacromolecules 16:2672–2683

    Article  CAS  Google Scholar 

  12. Kretsinger JK, Haines LA, Ozbas B et al (2005) Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces. Biomaterials 26:5177–5186

    Article  CAS  Google Scholar 

  13. Altunbas A, Lee SJ, Rajasekaran SA et al (2011) Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 32:5906–5914

    Article  CAS  Google Scholar 

  14. Sun JE, Stewart B, Litan A et al (2016) Sustained release of active chemotherapeutics from injectable-solid beta-hairpin peptide hydrogel. Biomater Sci 4:839–848

    Article  CAS  Google Scholar 

  15. Giano MC, Pochan DJ, Schneider JP (2011) Controlled biodegradation of self-assembling beta-hairpin peptide hydrogels by proteolysis with matrix metalloproteinase-13. Biomaterials 32:6471–6477

    Article  CAS  Google Scholar 

  16. Nagy KJ, Giano MC, Jin A et al (2011) Enhanced mechanical rigidity of hydrogels formed from enantiomeric peptide assemblies. J Am Chem Soc 133:14975–14977

    Article  CAS  Google Scholar 

  17. Nagarkar RP, Hule RA, Pochan DJ et al (2008) De novo design of strand-swapped beta-hairpin hydrogels. J Am Chem Soc 130:4466–4474

    Article  CAS  Google Scholar 

  18. Pochan DJ, Schneider JP, Kretsinger J et al (2003) Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de Novo designed peptide. J Am Chem Soc 125:11802–11803

    Article  CAS  Google Scholar 

  19. Schneider JP, Pochan DJ, Ozbas B et al (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124:15030–15037

    Article  CAS  Google Scholar 

  20. Ozbas B, Kretsinger J, Rajagopal K et al (2004) Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 37:7331–7337

    Article  CAS  Google Scholar 

  21. Yan C, Altunbas A, Yucel T et al (2010) Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable [small beta]-hairpin peptide hydrogels. Soft Matter 6:5143–5156

    Article  CAS  Google Scholar 

  22. Branco MC, Pochan DJ, Wagner NJ et al (2009) Macromolecular diffusion and release from self-assembled beta-hairpin peptide hydrogels. Biomaterials 30:1339–1347

    Article  CAS  Google Scholar 

  23. Branco MC, Pochan DJ, Wagner NJ et al (2010) The effect of protein structure on their controlled release from an injectable peptide hydrogel. Biomaterials 31:9527–9534

    Article  CAS  Google Scholar 

  24. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  CAS  Google Scholar 

  25. Eastwood BJ, Farmen MW, Iversen PW et al (2006) The minimum significant ratio: a statistical parameter to characterize the reproducibility of potency estimates from concentration-response assays and estimation by replicate-experiment studies. J Biomol Screen 11:253–261

    Article  Google Scholar 

Download references

Acknowledgments

We thank Katherine Drake for critical reading of the manuscript. This work was supported by the DoBelieve Foundation, the Nemours Foundation, National Institutes of Health grant 1R01CA263216-01A1, and an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number U54-GM104941 (PI: Hicks).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid A. Langhans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sperle, K., Pochan, D.J., Langhans, S.A. (2023). 3D Hydrogel Cultures for High-Throughput Drug Discovery. In: Ursini-Siegel, J. (eds) The Tumor Microenvironment. Methods in Molecular Biology, vol 2614. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2914-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2914-7_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2913-0

  • Online ISBN: 978-1-0716-2914-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics