Skip to main content

Single-Molecule Imaging of Ganglioside Probes in Living Cell Plasma Membranes

  • Protocol
  • First Online:
Glycolipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2613))

  • 732 Accesses

Abstract

Gangliosides play a variety of physiological roles and are one of the most important lipid raft constituents. However, their dynamic behaviors have scarcely been investigated in living cells because of the lack of fluorescent probes that behave like their parental molecules. Recently, fluorescent ganglioside probes that mimic native ganglioside behaviors have been developed. In this chapter, I discuss the recent advances in research related to the lateral localization and dynamic behaviors of gangliosides in the plasma membranes of living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith DC, Lord JM, Roberts LM, Johannes L (2004) Glycosphingolipids as toxin receptors. Semin Cell Dev Biol 15(4):397–408

    Article  Google Scholar 

  2. Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312(5773):592–596

    Article  Google Scholar 

  3. Fleming FE, Bohm R, Dang VT, Holloway G, Haselhorst T, Madge PD, Deveryshetty J, Yu X, Blanchard H, von Itzstein M, Coulson BS (2014) Relative roles of GM1 ganglioside, N-acylneuraminic acids, and alpha2beta1 integrin in mediating rotavirus infection. J Virol 88(8):4558–4571

    Article  Google Scholar 

  4. Patry RT, Stahl M, Perez-Munoz ME, Nothaft H, Wenzel CQ, Sacher JC, Coros C, Walter J, Vallance BA, Szymanski CM (2019) Bacterial AB5 toxins inhibit the growth of gut bacteria by targeting ganglioside-like glycoconjugates. Nat Commun 10(1):1390

    Article  Google Scholar 

  5. Yoon SJ, Nakayama K, Hikita T, Handa K, Hakomori SI (2006) Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci U S A 103(50):18987–18991

    Article  Google Scholar 

  6. Coskun U, Grzybek M, Drechsel D, Simons K (2011) Regulation of human EGF receptor by lipids. Proc Natl Acad Sci U S A 108(22):9044–9048

    Article  Google Scholar 

  7. Dalton G, An SW, Al-Juboori SI, Nischan N, Yoon J, Dobrinskikh E et al (2017) Soluble klotho binds monosialoganglioside to regulate membrane microdomains and growth factor signaling. Proc Natl Acad Sci U S A 114(4):752–757

    Article  Google Scholar 

  8. Dam DH, Wang XQ, Sheu S, Vijay M, Shipp D, Miller L et al (2017) Ganglioside GM3 mediates glucose-induced suppression of IGF-1 receptor-Rac1 activation to inhibit Keratinocyte motility. J Invest Dermatol 137(2):440–448

    Article  Google Scholar 

  9. Hakomori SI (2002) The glycosynapse. Proc Natl Acad Sci U S A 99(1):225–232

    Article  Google Scholar 

  10. Lingwood D, Binnington B, Rog T, Vattulainen I, Grzybek M, Coskun U, Lingwood CA, Simons K (2011) Cholesterol modulates glycolipid conformation and receptor activity. Nat Chem Biol 7(5):260–262

    Article  Google Scholar 

  11. Fujita A, Cheng J, Hirakawa M, Furukawa K, Kusunoki S, Fujimoto T (2007) Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol Biol Cell 18(6):2112–2122

    Article  Google Scholar 

  12. Kusunoki S, Kaida K (2011) Antibodies against ganglioside complexes in Guillain-Barre syndrome and related disorders. J Neurochem 116(5):828–832

    Article  Google Scholar 

  13. Yanagisawa K, Odaka A, Suzuki N, Ihara Y (1995) GM1 ganglioside-bound amyloid beta-protein (A beta): a possible form of preamyloid in Alzheimer’s disease. Nat Med 1(10):1062–1066

    Article  Google Scholar 

  14. Matsuda J, Suzuki O, Oshima A, Yamamoto Y, Noguchi A, Takimoto K et al (2003) Chemical chaperone therapy for brain pathology in G(M1)-gangliosidosis. Proc Natl Acad Sci U S A 100(26):15912–15917

    Article  Google Scholar 

  15. Hammond AT, Heberle FA, Baumgart T, Holowka D, Baird B, Feigenson GW (2005) Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc Natl Acad Sci U S A 102(18):6320–6325

    Article  Google Scholar 

  16. Komura N, Suzuki KGN, Ando H, Konishi M, Koikeda M, Imamura A et al (2016) Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat Chem Biol 12(6):402–410

    Article  Google Scholar 

  17. Sezgin E, Levental I, Mayor S, Eggeling C (2017) The mystery of membrane organization: composition, regulation and physiological relevance of lipid rafts. Nat Rev Mol Cell Biol 18(6):361–374

    Article  Google Scholar 

  18. Kabbani AN, Raghunathan K, Lencer WI, Kenworthy AK, Kelly CV (2020) Structured clustering of the glycosphingolipid GM1 is required for membrane curvature induced by cholera toxin. Proc Natl Acad Sci U S A 117(26):14978–14986

    Article  Google Scholar 

  19. Koyama-Honda I, Fujiwara TK, Kasai RS, Suzuki KGN, Kajikawa E, Tsuboi H et al (2020) High-speed single-molecule imaging reveals signal transduction by induced transbilayer raft phases. J Cell Biol 219(12):e202006125

    Article  Google Scholar 

  20. Kusumi A, Suzuki K (2005) Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta 1746(3):234–251

    Article  Google Scholar 

  21. Tanaka KA, Suzuki KG, Shirai YM, Shibutani ST, Miyahara MS, Tsuboi H et al (2010) Membrane molecules mobile even after chemical fixation. Nat Methods 7(11):865–866

    Article  Google Scholar 

  22. Schwarzmann G, Wendeler M, Sandhoff K (2005) Synthesis of novel NBD-GM1 and NBD-GM2 for the transfer activity of GM2-activator protein by a FRET-based assay system. Glycobiology 15(12):1302–1311

    Article  Google Scholar 

  23. Polyakova O, Dear D, Stern I, Martin S, Hirst E, Bawumia S et al (2009) Proteolysis of prion protein by cathepsin S generates a soluble beta-structured intermediate oligomeric form, with potential implications for neurotoxic mechanisms. Eur Biophys J 38(2):209–218

    Article  Google Scholar 

  24. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyyakova S et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159–1162

    Article  Google Scholar 

  25. Polyakova SM, Belov VN, Yan SF, Eggeling C, Ringemann C, Schwarzmann G et al (2009) New GM1 ganglioside derivatives for selective single and double labelling of the natural glycosphingolipid skeleton. Eur J Org 30:5162–5177

    Article  Google Scholar 

  26. Komura N, Suzuki KGN, Ando H, Konishi M, Imamura A, Ishida H et al (2017) Synthesis of fluorescent gangliosides for the studies of raft domains. Methods Enzymol 597:239–263

    Article  Google Scholar 

  27. Suzuki KGN, Ando H, Komura N, Fujiwara TK, Kiso M, Kusumi A (2017) Development of new ganglioside probes and unraveling of raft domain structure by single-molecule imaging. Biochim Biophys Acta 1861(10):2494–2506

    Article  Google Scholar 

  28. Suzuki KGN, Ando H, Komura N, Konishi M, Imamura A, Ishida H et al (2018) Revealing the raft domain organization in the plasma membrane by single-molecule imaging of fluorescent ganglioside analogs. Methods Enzymol 598:267–282

    Article  Google Scholar 

  29. Kusumi A, Fujiwara TK, Tsunoyama TA, Kasai RS, Liu AA, Hirosawa KM et al (2020) Defining raft domains in the plasma membrane. Traffic 21(1):106–137

    Article  Google Scholar 

  30. Konishi M, Komura N, Hirose Y, Suganuma Y, Tanaka HN, Imamura A et al (2020) Development of fluorescent ganglioside GD3 and GQ1b analogs for elucidation of raft-associated interactions. J Org Chem 85(24):15998–16013

    Article  Google Scholar 

  31. Asano S, Pal R, Tanaka HN, Imamura A, Ishida H, Suzuki KGN, Ando H (2019) Development of fluorescently labeled SSEA-3, SSEA-4, and Globo-H glycosphingolipids for elucidating molecular interactions in the cell membrane. Int J Mol Sci 20(24):6187

    Article  Google Scholar 

  32. Schwartzmann G (2018) Labeled gangliosides: their synthesis and use in biological studies. FEBS Lett 592(23):3993–4006

    Google Scholar 

  33. Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW (2018) Synthetic strategies for modified glycosphingolipids and their design as probes. Chem Rev 118(17):8188–2141

    Article  Google Scholar 

  34. Lenne PF, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo XJ et al (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25(14):3245–3256

    Article  Google Scholar 

  35. Honigmann A, Mueller V, Ta H, Schoenle A, Sezgin E, Hell SW, Eggeling C (2014) Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat Commun 5:5412

    Article  Google Scholar 

  36. Sahl SJ, Leutenegger ML, Hilbert M, Hell SW, Eggeling C (2010) Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids. Proc Natl Acad Sci U S A 107(15):6829–6834

    Article  Google Scholar 

  37. Wenger J, Conchonaud F, Dintinger J, Wawrezinieck L, Ebbesen TW, Rigneault H et al (2007) Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys J 92(3):913–919

    Article  Google Scholar 

  38. Sezgin E, Levental I, Grzybek M, Schwarzmann G, Mueller V, Honigmann A et al (2012) Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim Biophys Acta 1818(7):1777–1784

    Article  Google Scholar 

  39. Kinoshita M, Suzuki KGN, Matsumori N, Takada M, Ano H, Morigaki K et al (2017) Rafts-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. J Cell Biol 216(4):1183–1204

    Article  Google Scholar 

  40. Kinoshita M, Suzuki KGN, Murata M, Matsumori N (2018) Evidence of lipid rafts based on the partition and dynamic behavior of sphingomyelins. Chem Phys Lipids 215:84–95

    Article  Google Scholar 

  41. Ariola FS, Li Z, Cornejo C, Bittman R, Heikal AA (2009) Membrane fluidity and lipid order in ternary giant unilamellar vesicles using a new bodipy-cholesterol derivative. Biophys J 96(7):2696–2708

    Article  Google Scholar 

  42. Hiramoto-Yamaki N, Tanaka KAK, Suzuki KGN, Hirosawa KM, Miyahara MS, Kalay Z et al (2014) Ultrafast diffusion of a fluorescent cholesterol analog in compartmentalized plasma membranes. Traffic 15(6):583–612

    Article  Google Scholar 

  43. Kusumi A, Suzuki K, Koyasako K (1999) Mobility and cytoskeletal interactions of cell adhesion receptors. Curr Opin Cell Biol 11(5):582–590

    Article  Google Scholar 

  44. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157(6):1071–1081

    Article  Google Scholar 

  45. Murase K, Fujiwara T, Umemra Y, Suzuki K, Iino R, Yamashita H et al (2004) Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys J 86(6):4075–4093

    Article  Google Scholar 

  46. Kusumi A, Koyama-Honda I, Suzuki K (2004) Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable-state rafts. Traffic 6(4):213–230

    Article  Google Scholar 

  47. Suzuki K, Ritchie K, Kajikawa E, Fujiwara T, Kusumi A (2005) Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys J 88(5):3659–3680

    Article  Google Scholar 

  48. Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H et al (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378

    Article  Google Scholar 

  49. Umemura YM, Vrljic M, Nishimura SY, Fujiwara TK, Suzuki KG et al (2008) Both MHC class II and its GPI-anchored form undergo hop diffusion as observed by single-molecule tracking. Biophys J 95(1):435–450

    Article  Google Scholar 

  50. Kusumi A, Shirai YM, Koyama-Honda I, Suzuki KG, Fujiwara TK (2010) Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy. FEBS Lett 584(9):1814–1823

    Article  Google Scholar 

  51. Kusumi A, Suzuki KG, Kasai RS, Ritchie K, Fujiwara TK (2011) Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem Sci 36(11):604–615

    Article  Google Scholar 

  52. Kusumi A, Fujiwara TK, Chadda R, Xie M, Tsunoyama TA, Kalay Z et al (2012) Dynamic organization principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicholson’s fluid-mosaic model. Annu Rev Cell Dev Biol 28:215–250

    Article  Google Scholar 

  53. Fujiwara TK, Iwasawa K, Kalay Z, Tsunoyama TA, Watanabe Y et al (2016) Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane. Mol Biol Cell 27(7):1101–1119

    Article  Google Scholar 

  54. Morone N, Fujiwara T, Murase K, Kasai RS, Ike H, Yuasa S et al (2006) Three-dimensional reconstitution of the membrane skeleton at the plasma membrane interface by electron tomography. J Cell Biol 174(6):851–862

    Article  Google Scholar 

  55. Saxton MJ (1990) Lateral diffusion in a mixture of mobile and immobile particles. A monte-Carlo study. Biophys J 58(5):1303–1306

    Article  Google Scholar 

  56. Dodd TL, Hammer DA, Sangani AS, Koch DL (1995) Numerical simulations of the effect of hydrodynamic interactions on diffusivities of integral membrane proteins. J Fluid Mech 293:147–180

    Article  Google Scholar 

  57. Ritchie K, Shan XY, Kondo J, Iwasawa K, Fujiwara T, Kusumi A (2005) Detection of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys J 88(3):2266–2277

    Article  Google Scholar 

  58. Suzuki KGN, Kasai RS, Hirosawa KM, Nemoto YL, Ishibashi M, Miwa Y et al (2012) Transient GPI-anchored homodimer rafts are units for raft organization and function. Nat Chem Biol 8(9):774–783

    Article  Google Scholar 

  59. Kasai RS, Suzuki KGN, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A (2011) Full characterization of GPCR monomer-dimer dynamics equilibrium by single molecule imaging. J Cell Biol 192(3):463–480

    Article  Google Scholar 

  60. Morise J, Suzuki KGN, Kitagawa A, Wakazono Y, Takamiya K, Tsunoyama T et al (2019) AMPA receptors in the synapse turnover by monomer diffusion. Nat Commun 10(1):5245

    Article  Google Scholar 

  61. Suzuki KGN, Kasai RS, Fujiwara TK, Kusumi A (2013) Single-molecule imaging of receptor-receptor interactions. Methods Cell Biol 117:373–390

    Article  Google Scholar 

  62. Tiwari SS, Shirai YM, Nemoto YL, Kojima K, Suzuki KGN (2018) Native prion protein homodimers are destabilized by oligomeric amyloid β1-42 species as shown by single-molecule imaging. Neuroreport 29(2):106–111

    Article  Google Scholar 

  63. Suzuki KGN, Fujiwara TK, Sanematsu F, Iino R, Edidin M, Kusumi A (2007) GPI-anchored receptor clusters transiently recruit Lyn and Gα for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J Cell Biol 177(4):717–730

    Article  Google Scholar 

  64. Suzuki KGN, Fujiwara TK, Edidin M, Kusumi A (2007) Dynamic recruitment of phospholipase Cγ at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J Cell Biol 177(4):731–742

    Article  Google Scholar 

  65. Suzuki KGN (2012) Lipid rafts generate digital-like signal transduction in cell plasma membranes. Biotechnol J 7(6):753–761

    Article  Google Scholar 

  66. Kusumi A, Fujiwara TK, Morone N, Yoshida KJ, Chadda R, Xie M et al (2012) Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Semin Cell Dev Biol 23(2):126–144

    Article  Google Scholar 

  67. Suzuki KGN (2015) New insights into the organization of plasma membrane and its role in signal transduction. Int Rev Cell Mol Biol 317:67–96

    Article  Google Scholar 

  68. Suzuki KGN (2016) Single-molecule imaging of signal transduction via GPI-anchored receptors. Methods Mol Biol 1376:229–238

    Article  Google Scholar 

  69. Arumugam S, Schmieder S, Pezeshkian W, Becken U, Wunder C, Chinnapen D et al (2021) Ceramide structure dictates glycosphingolipid nanodomain assembly and function. Nat Commun 12:3675

    Article  Google Scholar 

  70. Chinnapen DJ, Hsieh WT, Welscher YM, Saslowsky DE, Kaoutzani L, Brandsma E et al (2012) Lipid sorting by ceramide structure from plasma membrane to ER for the cholera toxin receptor ganglioside GM1. Dev Cell 23(3):573–586

    Article  Google Scholar 

  71. Garcia-Castillo MD, Chinnapen DJF, Te Welscher YM, Gonzalez RJ, Softic S, Pacheco M et al (2018) Mucosal absorption of therapeutic peptides by harnessing the endogenous sorting of glycosphingolipids. elife 7:e34469

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Specific Research Kiban B (21H02424) and for Innovative Areas (20 K21387) from the Japan Society for the Promotion of Science, by a grant from Core Research for Evolutional Science and Technology (CREST project of “Elucidation of Biological Mechanism of Extracellular Fine Particles and the Control System”) of the Japan Science and Technology Agency (JPMJCR18H2), and by a grant from the Takeda Foundation. WPI-iCeMS of Kyoto University is supported by the World Premiere Research Center Initiative (WPI) of the ΜEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi G. N. Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Suzuki, K.G.N. (2023). Single-Molecule Imaging of Ganglioside Probes in Living Cell Plasma Membranes. In: Kabayama, K., Inokuchi, Ji. (eds) Glycolipids. Methods in Molecular Biology, vol 2613. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2910-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2910-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2909-3

  • Online ISBN: 978-1-0716-2910-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics