Skip to main content

Extraction, Purification, and Chemical Degradation of LPS from Gut Microbiota Strains

  • Protocol
  • First Online:
Glycolipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2613))

Abstract

It is estimated that more than 500 different bacterial species colonize the human gut, and they are collectively known as the gut microbiota. Such a massive bacterial presence is now considered an additional organ of the human body, thus becoming the object of an intense and daily growing research activity. Gram-negative bacteria represent a large percentage of the gut microbiota strains. The main constituent of the outer membrane of Gram-negatives is the lipopolysaccharide (LPS). Since its first discovery, LPS has been extensively studied for its structure-dependent capability to elicit a potent immune inflammatory reaction when perceived by specific immune receptors present in our body. Therefore, traditionally, LPS, due to its peculiar chemistry, has been associated with pathogenic bacteria, and it has been extensively studied for its dangerous effects on human health. However, LPS is also expressed on the cell surface of harmless and beneficial bacteria that colonize our intestines. This necessarily implies that the LPS from harmless gut microbes is “chemically different” from that owned by pathogenic ones, hence enabling successful colonization of the intestinal tract without creating a threat to the host immune system. Deciphering the structural features of LPS from these gut bacteria is essential to improve our still scarce knowledge of how the human host lives in a harmonious relationship with its own microbiota. To this end, LPS extraction and purification are essential steps in this field of research. Yet working with gut bacteria is extremely complex for a number of reasons, one being related to the fact that they produce an array of other glycans and glycoconjugates, such as capsular polysaccharides and/or exopolysaccharides, which render the isolation and characterization of the sole LPS not at all trivial. Here, we provide a protocol that might help when dealing with LPS from gut microbial species. We describe the preliminary manipulations and checks, extraction, and purification approaches, as well as the necessary chemical manipulations that should be performed to enable the characterization of the structure of an LPS by means of techniques like nuclear magnetic resonance spectroscopy and mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Surana NK, Kasper DL (2014) Deciphering the tête-à-tête between the microbiota and the immune system. J Clin Invest 124(10):4197–4203. https://doi.org/10.1172/JCI72332

    Article  Google Scholar 

  2. Di Lorenzo F, De Castro C, Silipo A, Molinaro A (2019) Lipopolysaccharide structures of gram-negative populations in the gut microbiota and effects on host interactions. FEMS Microbiol Rev 43(3):257–272. https://doi.org/10.1093/femsre/fuz002

    Article  CAS  Google Scholar 

  3. The Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. https://doi.org/10.1038/nature11234

    Article  CAS  Google Scholar 

  4. Eckburg PB, Bik EM, Bernstein CN, Pirani A, Atherly T, Jimenez R, Terrapon N, Henrissat B, Peterson D, Ziemer C, Snitkin E, Martens EC (2005) Diversity of the human intestinal microbial Flora. Science 308(5728):1635. https://doi.org/10.1126/science.1110591

    Article  Google Scholar 

  5. Lee YK, Mehrabian P, Boyajian S, Wu W-L, Selicha J, Vonderfecht S, Mazmanian SK (2018) The protective role of Bacteroides fragilis in a murine model of colitis-associated colorectal cancer. mSphere 3(6):e00587–e00518. https://doi.org/10.1128/mSphere.00587-18

    Article  CAS  Google Scholar 

  6. Steimle A, Gronbach K, Beifuss B, Schäfer A, Harmening R, Bender A, Maerz JK, Lange A, Michaelis L, Maurer A, Menz S, McCoy K, Autenrieth IB, Kalbacher H, Frick J-S (2016) Symbiotic gut commensal bacteria act as host cathepsin S activity regulators. J Autoimmun 75:82–95. https://doi.org/10.1016/j.jaut.2016.07.009

    Article  CAS  Google Scholar 

  7. Cani PD, Depommier C, Derrien M, Everard A, de Vos WM (2022) Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol. https://doi.org/10.1038/s41575-022-00631-9

  8. Koh GY, Kane AV, Wu X, Crott JW (2020) Parabacteroides distasonis attenuates tumorigenesis, modulates inflammatory markers and promotes intestinal barrier integrity in azoxymethane-treated a/J mice. Carcinogenesis 41(7):909–917. https://doi.org/10.1093/carcin/bgaa018

    Article  CAS  Google Scholar 

  9. Ezeji JC, Sarikonda DK, Hopperton A, Erkkila HL, Cohen DE, Martinez SP, Cominelli F, Kuwahara T, Dichosa AEK, Good CE, Jacobs MR, Khoretonenko M, Veloo A, Rodriguez-Palacios A (2021) Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. Gut Microbes 13(1):e1922241. https://doi.org/10.1080/19490976.2021.1922241

    Article  CAS  Google Scholar 

  10. Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A (2021) A journey from structure to function of bacterial lipopolysaccharides. Chem Rev. https://doi.org/10.1021/acs.chemrev.0c01321

  11. Shimoyama A, Di Lorenzo F, Yamaura H, Mizote K, Palmigiano A, Pither MD, Speciale I, Uto T, Masui S, Sturiale L, Garozzo D, Hosomi K, Shibata N, Kabayama K, Fujimoto Y, Silipo A, Kunisawa J, Kiyono H, Molinaro A, Fukase K (2021) Lipopolysaccharide from gut-associated lymphoid-tissue-resident Alcaligenes faecalis: complete structure determination and chemical synthesis of its lipid a. Angew Chem Int Ed Engl 60(18):10023–10031. https://doi.org/10.1002/ANIE.202012374

    Article  CAS  Google Scholar 

  12. Liu Z, Hosomi K, Shimoyama A, Yoshii K, Sun X, Lan H, Wang Y, Yamaura H, Kenneth D, Saika A, Nagatake T, Kiyono H, Fukase K, Kunisawa J (2021) Chemically synthesized Alcaligenes lipid a as an adjuvant to augment immune responses to haemophilus Influenzae type B conjugate vaccine. Front Pharmacol 12. https://doi.org/10.3389/fphar.2021.763657

  13. Garcia-Vello P, Di Lorenzo F, Zucchetta D, Zamyatina A, De Castro C, Molinaro A (2022) Lipopolysaccharide lipid a: a promising molecule for new immunity-based therapies and antibiotics. Pharmacol Ther 230:107970. https://doi.org/10.1016/j.pharmthera.2021.107970

    Article  CAS  Google Scholar 

  14. Molinaro A, Holst O, Di Lorenzo F, Callaghan M, Nurisso A, D'Errico G, Zamyatina A, Peri F, Berisio R, Jerala R, Jiménez-Barbero J, Silipo A, Martín-Santamaría S (2015) Chemistry of lipid a: at the heart of innate immunity. Chem Eur J 21(2):500–519. https://doi.org/10.1002/chem.201403923

    Article  CAS  Google Scholar 

  15. Di Lorenzo F, Billod JM, Martín-Santamaría S, Silipo A (2017) Molinaro a (2017) gram-negative extremophile lipopolysaccharides: promising source of inspiration for a new generation of endotoxin antagonists. Eur J Org Chem 28:4055–4073. https://doi.org/10.1002/ejoc.201700113

    Article  CAS  Google Scholar 

  16. Porter NT, Martens EC (2017) The critical roles of polysaccharides in gut microbial ecology and physiology. Annu Rev Microbiol 71:349–369. https://doi.org/10.1146/annurev-micro-102215-095316

    Article  CAS  Google Scholar 

  17. Hsieh SA, Allen PM (2020) Immunomodulatory roles of polysaccharide capsules in the intestine. Front Immunol 11:690. https://doi.org/10.3389/fimmu.2020.00690

    Article  CAS  Google Scholar 

  18. De Castro C, Parrilli M, Holst O, Molinaro A (2010) Microbe-associated molecular patterns in innate immunity: extraction and chemical analysis of gram-negative bacterial lipopolysaccharides. Meth Enzymol 480:89–115. https://doi.org/10.1016/S0076-6879(10)80005-9

    Article  CAS  Google Scholar 

  19. Garcia-Vello P, Speciale I, Di Lorenzo F, Molinaro A, De Castro C (2022) Dissecting lipopolysaccharide composition and structure by GC-MS and MALDI spectrometry. In: Sperandeo P (ed) Methods and molecular biology. Lipopolysaccharide Transport-Methods and Protocols, Springer, 2548:181–209. https://doi.org/10.1007/978-1-0716-2581-1_12

  20. Sturiale L, Palmigiano A, Silipo A, Knirel YA, Anisimov AP, Lanzetta R, Parrilli M, Molinaro A, Garozzo D (2011) Reflectron MALDI TOF and MALDI TOF/TOF mass spectrometry reveal novel structural details of native lipooligosaccharides. J Mass Spectrom 46(11):1135–1142. https://doi.org/10.1002/jms.2000

    Article  CAS  Google Scholar 

  21. Speciale I, Notaro A, Garcia-Vello P, Di Lorenzo F, Armiento S, Molinaro A, Marchetti R, Silipo A, De Castro C (2022) Liquid-state NMR spectroscopy for complex carbohydrate structural analysis: a hitchhiker's guide. Carbohydr Polym 277:118885. https://doi.org/10.1016/j.carbpol.2021.118885

    Article  CAS  Google Scholar 

  22. Westphal O, Jann K (1965) Bacterial lipopolysaccharides extraction with phenol-water and further applications of the procedure. Methods Carbohydr Chem 5:83–91

    CAS  Google Scholar 

  23. Galanos C, Luderitz O, Westphal O (1969) A new method for the extraction of R lipopolysaccharides. Eur J Biochem 9:245–249. https://doi.org/10.1111/j.1432-1033.1969.tb00601.x

    Article  CAS  Google Scholar 

  24. Kittelberger R, Hilbink F (1993) Sensitive silver-staining detection of bacterial lipopolysaccharides in polyacrylamide gels. J Biochem Biophys Methods 26:81–86. https://doi.org/10.1016/0165-022X(93)90024-I

    Article  CAS  Google Scholar 

  25. Corzo J, Pérez-Galdona R, León-Barrios M, Gutiérrez-Navarro AM (1991) Alcian blue fixation allows silver staining of the isolated polysaccharide component of bacterial lipopolysaccharides in polyacrylamide gels. Electrophoresis 12:439–441. https://doi.org/10.1002/elps.1150120611

    Article  CAS  Google Scholar 

  26. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917. https://doi.org/10.1139/o59-099

    Article  CAS  Google Scholar 

  27. Holst O (2000) Deacylation of lipopolysaccharides and isolation of oligosaccharide phosphates. Methods Mol Biol 145:345–353. https://doi.org/10.1385/1-59259-052-7:345

  28. Di Lorenzo F, Pither MD, Martufi M, Scarinci I, Guzmán-Caldentey J, Łakomiec E, Jachymek W, Bruijns SCM, Santamaría SM, Frick JS, van Kooyk Y, Chiodo F, Silipo A, Bernardini ML, Molinaro A (2020) Pairing Bacteroides vulgatus LPS structure with its immunomodulatory effects on human cellular models. ACS Cent Sci 6(9):1602–1616. https://doi.org/10.1021/acscentsci.0c00791

    Article  CAS  Google Scholar 

  29. Pither MD, Illiano A, Pagliuca C, Jacobson A, Mantova G, Stornaiuolo A, Colicchio R, Vitiello M, Pinto G, Silipo A, Fischbach MA, Salvatore P, Amoresano A, Molinaro A, Di Lorenzo F (2022). Bacteroides thetaiotaomicron rough-type lipopolysaccharide: The chemical structure and the immunological activity. Carbohydr Polym 297:120040.https://doi.org/10.1016/j.carbpol.2022.120040

Download references

Acknowledgments

“This work was supported by the Programme H2020 Marie Skłodowska-Curie ITN 2018 “SweetCrossTalk” grant n. 814102 and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant agreement No 101039841 to F.D.L.”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Molly Dorothy Pither or Flaviana Di Lorenzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pither, M.D., Silipo, A., Molinaro, A., Di Lorenzo, F. (2023). Extraction, Purification, and Chemical Degradation of LPS from Gut Microbiota Strains. In: Kabayama, K., Inokuchi, Ji. (eds) Glycolipids. Methods in Molecular Biology, vol 2613. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2910-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2910-9_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2909-3

  • Online ISBN: 978-1-0716-2910-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics