Skip to main content

Live-Cell Labeling and Artificial Intelligence Approaches for High-Resolution XYZT Imaging of Cytoskeletal Dynamics During Collective Cell Migration

  • Protocol
  • First Online:
Cell Migration in Three Dimensions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2608))

Abstract

Collective cell migration is crucial for a variety of pathophysiological processes including embryonic development, wound healing, carcinoma invasion, and sprouting angiogenesis. The behavior of leading and following cells during migration is highly dynamic and involves extensive cellular morphological changes mediated by the actin cytoskeleton. Imaging these rapid and dynamic changes over time requires expression of fluorescent proteins and/or live labeling with fluorescent probes, followed by acquiring series of image stacks at short intervals. This presents significant challenges related to dye cytotoxicity, signal loss, and in particular phototoxicity resulting from repeated irradiation, especially when using separate channels for multiple dyes and when imaging large z-stacks at short time intervals. In this chapter, we present methods for multicolor live-cell labeling of primary human endothelial cell populations, followed by multi-position time-lapse imaging in 2D and in 3D protein matrices. These approaches can be performed in combination with RNA interference to suppress the expression of specific proteins, as well as in mosaic assays using mixtures of differentially labeled cell populations. Finally, we present a protocol for long-term imaging at low laser intensity to minimize laser-induced cell damage, followed by post-imaging signal enhancement using artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  CAS  Google Scholar 

  2. Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2:a006502. https://doi.org/10.1101/cshperspect.a006502

    Article  CAS  Google Scholar 

  3. Senger DR, Davis GE (2011) Angiogenesis. Cold spring harb perspect. Biol 3(3):a005090

    Google Scholar 

  4. Hynes RO (2007) Cell-matrix adhesion in vascular development. J Thromb Haemost 5(Suppl 1):32–40

    Article  CAS  Google Scholar 

  5. del Toro R, Prahst C, Mathivet T, Siegfried G, Kaminker J, Larrivee B, Breant C, Duarte A, Takakura N, Fukamizu A, Penninger J, Eichmann A (2010) Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116:4025–4033

    Article  Google Scholar 

  6. Eilken HM, Adams RH (2010) Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22:617–625

    Article  CAS  Google Scholar 

  7. Bentley K, Franco CA, Philippides A, Blanco R, Dierkes M, Gebala V, Stanchi F, Jones M, Aspalter IM, Cagna G, Weström S, Claesson-Welsh L, Vestweber D, Gerhardt H The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat Cell Biol 16:309–321

    Google Scholar 

  8. Paatero I, Sauteur L, Lee M, Lagendijk AK, Heutschi D, Wiesner C, Guzmán C, Bieli D, Hogan BM, Affolter M, Belting HG (2018) Junction-based lamellipodia drive endothelial cell rearrangements in vivo via a VE-cadherin-F-actin based oscillatory cell-cell interaction. Nat Commun 9

    Google Scholar 

  9. De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cauwenberghs S, Eelen G, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, DeBerardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154:651–663. https://doi.org/10.1016/j.cell.2013.06.037

    Article  CAS  Google Scholar 

  10. Nakayama M, Nakayama A, van Lessen M, Yamamoto H, Hoffmann S, Drexler H, Itoh N, Hirose T, Breier G, Vestweber D, Cooper J, Ohno S, Kaibuchi K, Adams R (2013) Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat Cell Biol 15:249–260

    Article  CAS  Google Scholar 

  11. Kempers L, Wakayama Y, van der Bijl I, Furumaya C, De Cuyper IM, Jongejan A, Kat M, van Stalborch AMD, van Boxtel AL, Hubert M, Geerts D, van Buul JD, de Korte D, Herzog W, Margadant C (2021) The endosomal RIN2/Rab5C machinery prevents VEGFR2 degradation to control gene expression and tip cell identity during angiogenesis. Angiogenesis 24:695–714. https://doi.org/10.1007/s10456-021-09788-4

    Article  CAS  Google Scholar 

  12. Francis CR, Kushner EJ (2022) Trafficking in blood vessel development. Angiogenesis 25:291. https://doi.org/10.1007/s10456-022-09838-5

    Article  CAS  Google Scholar 

  13. Jakobsson L, Franco C, Bentley K, Collins R, Ponsioen B, Aspalter I, Rosewell I, Busse M, Thurston G, Medvinsky A, Schulte-Merker S, Gerhardt H (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12:943–953

    Article  CAS  Google Scholar 

  14. Arima S, Nishiyama K, Ko T, Arima Y, Hakozaki Y, Sugihara K, Koseki H, Uchijima Y, Kurihara Y, Kurihara H (2011) Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement. Development 138:4763–4776. https://doi.org/10.1242/dev.068023

    Article  CAS  Google Scholar 

  15. Svitkina T (2018) The actin cytoskeleton and actin-based motility. Cold Spring Harb Perspect Biol 10:a018267

    Article  Google Scholar 

  16. Munjal A, Lecuit T (2014) Actomyosin networks and tissue morphogenesis. Development 141:1789–1793. https://doi.org/10.1242/dev.091645

    Article  CAS  Google Scholar 

  17. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    Article  CAS  Google Scholar 

  18. Cao J, Ehling M, März S, Seebach J, Tarbashevich K, Sixta T, Pitulescu ME, Werner AC, Flach B, Montanez E, Raz E, Adams RH, Schnittler H (2017) Polarized actin and VE-cadherin dynamics regulate junctional remodelling and cell migration during sprouting angiogenesis. Nat Commun 8:1–20. https://doi.org/10.1038/s41467-017-02373-8

    Article  CAS  Google Scholar 

  19. Spuul P, Daubon T, Pitter B, Alonso F, Fremaux I, Kramer I, Montanez E, Genot E (2016) VEGF-A/notch-induced podosomes proteolyse basement membrane collagen-IV during retinal sprouting angiogenesis. Cell Rep 17:484–500. https://doi.org/10.1016/j.celrep.2016.09.016

    Article  CAS  Google Scholar 

  20. Seano G, Chiaverina G, Gagliardi PA, Blasio L, Puliafito A, Bouvard C, Sessa R, Tarone G, Sorokin L, Helley D, Jain RK, Serini G, Bussolino F, Primo L (2014) Endothelial podosome rosettes regulate vascular branching in tumour angiogenesis. Nat Cell Biol 16:1–8

    Article  Google Scholar 

  21. Melak M, Plessner M, Grosse R (2017) Actin visualization at a glance. J Cell Sci 130:525–530. https://doi.org/10.1242/jcs.204487

    Article  Google Scholar 

  22. Lukinavičius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Corrêa IR, Luo ZG, Schultz C, Lemke EA, Heppenstall P, Eggeling C, Manley S, Johnsson K (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5:132–139. https://doi.org/10.1038/nchem.1546

    Article  CAS  Google Scholar 

  23. Nakatsu MN, Hughes CC (2008) An optimised three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzym 443:65–82. https://doi.org/10.1016/S0076-6879(08)02004-1

    Article  CAS  Google Scholar 

  24. Kempers L, van der Bijl I, van Stalborch A-MD, Ponsioen B, Margadant C (2021) Fast in vitro protocol for the visualization and quantitative high-throughput analysis of sprouting angiogenesis by confocal microscopy. STAR Protoc 2:100690. https://doi.org/10.1016/j.xpro.2021.100690

    Article  CAS  Google Scholar 

  25. Weigert M, Schmidt U, Boothe T, Müller A, Dibrov A, Jain A, Wilhelm B, Schmidt D, Broaddus C, Culley S, Rocha-Martins M, Segovia-Miranda F, Norden C, Henriques R, Zerial M, Solimena M, Rink J, Tomancak P, Royer L, Jug F, Myers EW (2018) Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat Methods 15:1090–1097. https://doi.org/10.1038/s41592-018-0216-7

    Article  CAS  Google Scholar 

  26. Lukinavičius G, Reymond L, D’Este E, Masharina A, Göttfert F, Ta H, Güther A, Fournier M, Rizzo S, Waldmann H, Blaukopf C, Sommer C, Gerlich DW, Arndt HD, Hell SW, Johnsson K (2014) Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods 11:731–733. https://doi.org/10.1038/nmeth.2972

    Article  CAS  Google Scholar 

  27. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100. https://doi.org/10.1186/gb-2006-7-10-r100

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Luc Reymond (Spirochrome, Switzerland) for his kind gifts of probes and advice. We further acknowledge Joost Boex (Tebu-bio, the Netherlands) for organizing probe delivery, Jeroen Kole (Confocal.nl, Amsterdam, the Netherlands) for advice, and Nanne Paauw (Microscopy and Cytometry core facility Amsterdam UMC, location VUmc) for technical support with imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coert Margadant .

Editor information

Editors and Affiliations

1 Electronic Supplementary Movie Legends

Live imaging of nuclear and cytoskeletal dynamics during endothelial cell migration in a scratch assay (AVI 14820 kb)

Live imaging of nuclear and cytoskeletal dynamics in a mosaic endothelial cell population during cell migration (AVI 14363 kb)

Live imaging of nuclear and cytoskeletal dynamics in a sprouting endothelial tip cell. (AVI 14820 kb)

Phototoxicity upon live-cell imaging of sprouting tip cells (AVI 14820 kb)

Signal enhancement in live-cell movies using AI-based image restoration (AVI 14820 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cammeraat, M., Popovic, M., Stam, W., Margadant, C. (2023). Live-Cell Labeling and Artificial Intelligence Approaches for High-Resolution XYZT Imaging of Cytoskeletal Dynamics During Collective Cell Migration. In: Margadant, C. (eds) Cell Migration in Three Dimensions. Methods in Molecular Biology, vol 2608. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2887-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2887-4_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2886-7

  • Online ISBN: 978-1-0716-2887-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics