Skip to main content

Detecting Horizontal Transfer of Transposons

  • Protocol
  • First Online:
Transposable Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2607))

  • 1337 Accesses

Abstract

Transposable elements (TEs) are prevalent genomic components which can replicate as a function of mobilization in eukaryotes. Not only do they alter genome structure, they also play regulatory functions or organize chromatin structure. In addition to vertical parent-to-offspring inheritance, TEs can also horizontally “jump” between species, known as horizontal transposon transfer (HTT). This can rapidly alter the course of genome evolution. In this chapter, we provide a practical framework to detect HTT events. Our HTT detection framework is based on the use of sequence alignment to determine the divergence/conservation profiles of TE families to determine the history of expansion events. In summary, it includes (a) workflow of HTT detection from Ab initio identified TEs; (b) workflow for detecting HTT for specific, curated TEs; and (c) workflow for validating detected HTT candidates. Our framework covers two common scenarios of HTT detection in the modern omics era, and we believe it will serve as a valuable toolbox for the TE and genomics research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvak Z, Levin HL, Macfarlan TS, Mager DL, Feschotte C (2018) Ten things you should know about transposable elements. Genome Biol 19:ARTN 199. https://doi.org/10.1186/s13059-018-1577-z

    Article  CAS  Google Scholar 

  2. Kelly CJ, Chitko-McKown C, Chuong EB (2021) Ruminant-specific retrotransposons shape regulatory evolution of bovine immunity. bioRxiv:202120102001462810. https://doi.org/10.1101/2021.10.01.462810

  3. Barth NKH, Li LF, Taher L (2020) Independent transposon exaptation is a widespread mechanism of redundant enhancer evolution in the mammalian genome. Genome Biol Evol 12(3):1–17. https://doi.org/10.1093/gbe/evaa004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gause M, Morcillo P, Dorsett D (2001) Insulation of enhancer-promoter communication by a gypsy transposon insert in the Drosophila cut gene: cooperation between suppressor of hairy-wing and modifier of mdg4 proteins. Mol Cell Biol 21(14):4807–4817. https://doi.org/10.1128/Mcb.21.14.4807-4817.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu JY, Chang L, Li T, Wang T, Yin YF, Zhan G, Han X, Zhang K, Tao YB, Percharde M, Wang L, Peng Q, Yan PX, Zhang H, Bi XJ, Shao W, Hong YT, Wu ZY, Ma RZ, Wang PZ, Li WZ, Zhang J, Chang Z, Hou YP, Zhu B, Ramalho-Santos M, Li PL, Xie W, Na J, Sun YJ, Shen XH (2021) Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Res 31(6):613–630. https://doi.org/10.1038/s41422-020-00466-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Walsh AM, Kortschak RD, Gardner MG, Bertozzi T, Adelson DL (2013) Widespread horizontal transfer of retrotransposons. P Natl Acad Sci USA 110(3):1012–1016. https://doi.org/10.1073/pnas.1205856110

    Article  CAS  Google Scholar 

  7. Peccoud J, Loiseau V, Cordaux R, Gilbert C (2017) Massive horizontal transfer of transposable elements in insects. P Natl Acad Sci USA 114(18):4721–4726. https://doi.org/10.1073/pnas.1621178114

    Article  CAS  Google Scholar 

  8. Ivancevic AM, Kortschak RD, Bertozzi T, Adelson DL (2018) Horizontal transfer of BovB and L1 retrotransposons in eukaryotes. Genome Biol 19:ARTN 85. https://doi.org/10.1186/s13059-018-1456-7

    Article  CAS  Google Scholar 

  9. Galbraith JD, Ludington AJ, Suh A, Sanders KL, Adelson DL (2020) New environment, new invaders-repeated horizontal transfer of LINEs to sea snakes. Genome Biol Evol 12(12):2370–2383. https://doi.org/10.1093/gbe/evaa208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Galbraith JD, Ludington AJ, Sanders KL, Suh A, Adelson DL (2021) Horizontal transfer and subsequent explosive expansion of a DNA transposon in sea kraits (Laticauda). Biol Lett 17(9):ARTN 20210342. https://doi.org/10.1098/rsbl.2021.0342

    Article  Google Scholar 

  11. Pace JK, Gilbert C, Clark MS, Feschotte C (2008) Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. P Natl Acad Sci USA 105(44):17023–17028. https://doi.org/10.1073/pnas.0806548105

    Article  Google Scholar 

  12. Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF (2020) RepeatModeler2 for automated genomic discovery of transposable element families. P Natl Acad Sci USA 117(17):9451–9457. https://doi.org/10.1073/pnas.1921046117

    Article  CAS  Google Scholar 

  13. Zeng L, Kortschak RD, Raison JM, Bertozzi T, Adelson DL (2018) Superior ab initio identification, annotation and characterisation of TEs and segmental duplications from genome assemblies. PLoS One 13(3):ARTN e0193588. https://doi.org/10.1371/journal.pone.0193588

    Article  CAS  Google Scholar 

  14. Flutre T, Duprat E, Feuillet C, Quesneville H (2011) Considering transposable element diversification in De Novo annotation approaches. PLoS One 6(1):ARTN e16526. https://doi.org/10.1371/journal.pone.0016526

    Article  CAS  Google Scholar 

  15. Quesneville H, Bergman CM, Andrieu O, Autard D, Nouaud D, Ashburner M, Anxolabehere D (2005) Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol 1(2):166–175. ARTN e22. https://doi.org/10.1371/journal.pcbi.0010022

    Article  CAS  PubMed  Google Scholar 

  16. Bao WD, Kojima KK, Kohany O (2015) Repbase update, a database of repetitive elements in eukaryotic genomes. Mobile DNA-Uk 6:ARTN 11. https://doi.org/10.1186/s13100-015-0041-9

    Article  Google Scholar 

  17. Hubley R, Finn RD, Clements J, Eddy SR, Jones TA, Bao WD, Smit AFA, Wheelers TJ (2016) The Dfam database of repetitive DNA families. Nucleic Acids Res 44(D1):D81–D89. https://doi.org/10.1093/nar/gkv1272

    Article  CAS  PubMed  Google Scholar 

  18. Goubert C, Craig RJ, Bilat AF, Peona V, Vogan AA, Protasio AV (2022) A beginner's guide to manual curation of transposable elements (vol 13, 7, 2022). Mobile DNA-Uk 13(1):ARTN 15. https://doi.org/10.1186/s13100-022-00272-4

    Article  Google Scholar 

  19. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  21. Rognes T, Flouri T, Nichols B, Quince C, Mahe F (2016) VSEARCH: a versatile open source tool for metagenomics. Peerj 4:ARTN e2584. https://doi.org/10.7717/peerj.2584

    Article  Google Scholar 

  22. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191. https://doi.org/10.1093/bioinformatics/btp033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu SN, Wang JY, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, Thanki N, Yamashita RA, Yang MZ, Zhang DC, Zheng CJ, Lanczycki CJ, Marchler-Bauer A (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48(D1):D265–D268. https://doi.org/10.1093/nar/gkz991

    Article  CAS  PubMed  Google Scholar 

  24. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982. https://doi.org/10.1038/nrg2165

    Article  CAS  PubMed  Google Scholar 

  25. Jurka J, Klonowski P, Dagman V, Pelton P (1996) Censor - A program for identification and elimination of repetitive elements from DNA sequences. Comput Chem 20(1):119–121. https://doi.org/10.1016/S0097-8485(96)80013-1

    Article  CAS  PubMed  Google Scholar 

  26. Huda A, Jordan IK (2009) Analysis of transposable element sequences using CENSOR and RepeatMasker. In: Posada D (ed) Bioinformatics for DNA sequence analysis. Humana Press, Totowa, pp 323–336. https://doi.org/10.1007/978-1-59745-251-9_16

    Chapter  Google Scholar 

  27. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066. https://doi.org/10.1093/nar/gkf436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334

    Article  CAS  PubMed  Google Scholar 

  30. Price MN, Dehal PS, Arkin AP (2010) FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5(3):ARTN e9490. https://doi.org/10.1371/journal.pone.0009490

    Article  CAS  Google Scholar 

  31. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35(21):4453–4455. https://doi.org/10.1093/bioinformatics/btz305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era (vol 37, pg 1530, 2020). Mol Biol Evol 37(8):2461–2461. https://doi.org/10.1093/molbev/msaa131

    Article  PubMed  PubMed Central  Google Scholar 

  33. Marcais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27(6):764–770. https://doi.org/10.1093/bioinformatics/btr011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Churakov G, Grundmann N, Kuritzin A, Brosius J, Makalowski W, Schmitz J (2010) A novel web-based TinT application and the chronology of the Primate Alu retroposon activity. BMC Evol Biol 10:Artn 376. https://doi.org/10.1186/1471-2148-10-376

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Adelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Galbraith, J.D., Ivancevic, A.M., Qu, Z., Adelson, D.L. (2023). Detecting Horizontal Transfer of Transposons. In: Branco, M.R., de Mendoza Soler, A. (eds) Transposable Elements. Methods in Molecular Biology, vol 2607. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2883-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2883-6_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2882-9

  • Online ISBN: 978-1-0716-2883-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics