Skip to main content

Recording Acoustic Behavior in Astyanax mexicanus Fish: Acquisition, Decryption, and Interpretation

  • Protocol
  • First Online:
Emerging Model Organisms

Part of the book series: Neuromethods ((NM,volume 194))

  • 462 Accesses

Abstract

Acoustic communication, a key feature in social animals involving exchange of information between congeners, or with individuals of other species, can be studied in experimentally controlled conditions as well as in freely behaving individuals in natural contexts. Integrative approaches, coupling transdisciplinary knowledge from neuroscience, physics, and refined computational spectral decoding, have recently allowed a better structural decryption of species-specific sounds associated with basic or complex behaviors. Here are described gold-standard procedures to synchronize underwater sound and video acquisition, subsequent sound and behavioral analysis, and quantification, with playback functional response assays in the surface and cave morphotype of Astyanax mexicanus in a laboratory context. The goal is to provide procedures on how to apply both qualitative and quantitative video–sound recordings to study acoustic behaviors and communication in fish and highlight advantages and limitations of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  2. Green S, Marler P (1979) The analysis of animal communication. In: Marler P, Vandenbergh JG (eds) Social behavior and communication. Springer US, Boston, pp 73–158

    Chapter  Google Scholar 

  3. Römer H, Jörg L (1992) High-frequency sound transmission in natural habitats: implications for the evolution of insect acoustic communication. Behav Ecol Sociobiol 29:437–444

    Article  Google Scholar 

  4. Naguib M, Wiley RH (2001) Estimating the distance to a source of sound: mechanisms and adaptations for long-range communication. Anim Behav 62:825–837

    Article  Google Scholar 

  5. Griffin DR, Webster FA, Michael CR (1960) The echolocation of flying insects by bats. Anim Behav 8:141–154

    Article  Google Scholar 

  6. Dechmann DK, Wikelski M, van Noordwijk HJ, Voigt CC, Voigt-Heucke SL (2013) Metabolic costs of bat echolocation in a non-foraging context support a role in communication. Front Physiol 4:66

    Article  Google Scholar 

  7. Janik VM (2000) Food-related bray calls in wild bottlenose dolphins (Tursiops truncatus). Proc Biol Sci 267:923–927

    Article  Google Scholar 

  8. Marquez R, Bosch J, Eekhout X (2010) Intensity of female preference for call source level in midwife toads Alytes cisternasii and A. obstetricans. Behaviour 147:1185–1199

    Article  Google Scholar 

  9. Gerhardt HC (1994) The evolution of vocalization in frogs and toads. Annu Rev Ecol Syst 25:293–324

    Article  Google Scholar 

  10. Slabbekoorn H, Smith TB (2002) Bird song, ecology and speciation. Philos Trans R Soc Lond Ser B Biol Sci 357:493–503

    Article  Google Scholar 

  11. Ibara RM, Penny LT, Ebeling AW, van Dykhuizen G, Cailliet G (1983) The mating call of the plainfin midshipman fish, Porichthys notatus. In: Noakes DLG, Lindquist DG, Helfman GS, Ward JA (eds) Predators and prey in fishes: proceedings of the 3rd biennial conference on the ethology and behavioral ecology of fishes, held at Normal, Illinois, USA, May 19–22, 1981. Springer Netherlands, Dordrecht, pp 205–212

    Chapter  Google Scholar 

  12. Reby D, McComb K (2003) Vocal communication and reproduction in deer. Adv Study Behav 33:231–264

    Article  Google Scholar 

  13. Casar C, Zuberbuhler K, Young RJ, Byrne RW (2013) Titi monkey call sequences vary with predator location and type. Biol Lett 9:20130535

    Article  Google Scholar 

  14. Seyfarth RM, Cheney DL, Marler P (1980) Vervet monkey alarm calls: semantic communication in a free-ranging primate. Anim Behav 28:1070–1094

    Article  Google Scholar 

  15. Slobodchikoff CN, Kiriazis J, Fischer C, Creef E (1991) Semantic information distinguishing individual predators in the alarm calls of Gunnison’s prairie dogs. Anim Behav 42:713–719

    Article  Google Scholar 

  16. Waring GH (1970) Sound Communications of Black-tailed, white-tailed, and Gunnison’s prairie dogs. Am Midl Nat 83:167–185

    Article  Google Scholar 

  17. Poole JH (2011) Behavioral contexts of elephant acoustic communication. In: Moss CJ (ed) The Amboseli elephants: a long-term perspective on a long-lived mammal. The University of Chicago, Chicago, pp 125–161

    Chapter  Google Scholar 

  18. Braune P, Schmidt S, Zimmermann E (2005) Spacing and group coordination in a nocturnal primate, the Golden Brown mouse lemur (Microcebus ravelobensis): the role of olfactory and acoustic signals. Behav Ecol Sociobiol 58:587–596

    Article  Google Scholar 

  19. Jenkins PF (1978) Cultural transmission of song patterns and dialect development in a free-living bird population. Anim Behav 26:50–78

    Article  Google Scholar 

  20. Ford JKB (1991) Vocal traditions among resident killer whales (Orcinus orca) in coastal waters of British Columbia. Can J Zool 69:1454–1483

    Article  Google Scholar 

  21. Myrberg AA, Mohler M, Catala JD (1986) Sound production by males of a coral reef fish (Pomacentrus partitus): its significance to females. Anim Behav 34:913–923

    Article  Google Scholar 

  22. Amorim MCP, Knight ME, Stratoudakis Y, Turner GF (2004) Differences in sounds made by courting males of three closely related Lake Malawi cichlid species. J Fish Biol 65:1358–1371

    Article  Google Scholar 

  23. Lobel PS (1998) Possible species specific courtship sounds by two sympatric cichlid fishes in Lake Malawi, Africa. Environ Biol Fish 52:443–452

    Article  Google Scholar 

  24. Maldonado E, Rangel-Huerta E, Rodriguez-Salazar E, Pereida-Jaramillo E, Martínez-Torres A (2020) Subterranean life: behavior, metabolic, and some other adaptations of Astyanax cavefish. J Exp Zool B Mol Dev Evol 334:463–473

    Article  Google Scholar 

  25. Schemmel C (1980) Studies on the genetics of feeding behaviour in the cave fish Astyanax mexicanus f. anoptichthys. Z Tierpsychol 53:9–22

    Article  Google Scholar 

  26. Kowalko JE, Rohner N, Linden TA, Rompani SB, Warren WC, Borowsky R et al (2013) Convergence in feeding posture occurs through different genetic loci in independently evolved cave populations of Astyanax mexicanus. Proc Natl Acad Sci U S A 110:16933–16938

    Article  Google Scholar 

  27. Hüppop K (1987) Food-finding ability in cave fish (Astyanax fasciatus). Int J Speleol 16:4

    Article  Google Scholar 

  28. Elipot Y, Hinaux H, Callebert J, Retaux S (2013) Evolutionary shift from fighting to foraging in blind cavefish through changes in the serotonin network. Curr Biol 23:1–10

    Article  Google Scholar 

  29. Hinaux H, Rétaux S, Elipot Y (2015) Social behavior and aggressiveness in Astyanax. Academic Press/Elsevier

    Google Scholar 

  30. Elipot Y, Hinaux H, Callebert J, Launay J-M, Blin M, Rétaux S (2014) A mutation in the enzyme monoamine oxidase explains part of the Astyanax cavefish behavioural syndrome. Nat Commun 5:3647

    Article  Google Scholar 

  31. Duboué Erik R, Keene Alex C, Borowsky Richard L (2011) Evolutionary convergence on sleep loss in cavefish populations. Curr Biol 21:671–676

    Article  Google Scholar 

  32. Jaggard JB, Stahl BA, Lloyd E, Prober DA, Duboue ER, Keene AC (2018) Hypocretin underlies the evolution of sleep loss in the Mexican cavefish. eLife 7:e32637

    Article  Google Scholar 

  33. Alié A, Devos L, Torres-Paz J, Prunier L, Boulet F, Blin M et al (2018) Developmental evolution of the forebrain in cavefish, from natural variations in neuropeptides to behavior. eLife 7:e32808

    Article  Google Scholar 

  34. Jaggard J, Robinson BG, Stahl BA, Oh I, Masek P, Yoshizawa M et al (2017) The lateral line confers evolutionarily derived sleep loss in the Mexican cavefish. J Exp Biol 220:284–293

    Article  Google Scholar 

  35. Kowalko Johanna E, Rohner N, Rompani Santiago B, Peterson Brant K, Linden Tess A, Yoshizawa M et al (2013) Loss of schooling behavior in cavefish through sight-dependent and sight-independent mechanisms. Curr Biol 23:1874–1883

    Article  Google Scholar 

  36. John KR (1964) Illumination, vision, and schooling of Astyanax mexicanus (Fillipi). J Fish Res Board Can 21:1453–1473

    Article  Google Scholar 

  37. Parzefall J (1993) Schooling behaviour in population-hybrids of Astyanax fasciatus and Poecilia mexicana (Pisces, Characidae and Poeciliidae). In: Schröder JH, Bauer J (eds) Trends in ichthyology: an international perspective. GSF-Forschungszentrum für Umwelt und Gesundheit in association with Blackwell Scientific, Oxford, pp 297–302

    Google Scholar 

  38. Gregson JNS, Burt de Perera T (2007) Shoaling in eyed and blind morphs of the characin Astyanax fasciatus under light and dark conditions. J Fish Biol 70:1615–1619

    Article  Google Scholar 

  39. Yoshizawa M, Gorički Š, Soares D, Jeffery WR (2010) Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr Biol 20:1631–1636

    Article  Google Scholar 

  40. Yoshizawa M, Yamamoto Y, O’Quin KE, Jeffery WR (2012) Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish. BMC Biol 10:108

    Article  Google Scholar 

  41. Yoshizawa M, Jeffery WR, van Netten SM, McHenry MJ (2014) The sensitivity of lateral line receptors and their role in the behavior of Mexican blind cavefish (Astyanax mexicanus). J Exp Biol 217:886–895

    Google Scholar 

  42. Tabin JA, Aspiras A, Martineau B, Riddle M, Kowalko J, Borowsky R et al (2018) Temperature preference of cave and surface populations of Astyanax mexicanus. Dev Biol 441:338–344

    Article  Google Scholar 

  43. Hyacinthe C, Attia J, Retaux S (2019) Evolution of acoustic communication in blind cavefish. Nat Commun 10:4231

    Article  Google Scholar 

  44. Hyacinthe C, Attia J, Schutz E, Casane D, Rétaux S (2022) Acoustic signatures in cavefish populations inhabiting different caves. bioRxiv. https://doi.org/10.1101/2022.03.29.486255

  45. Sueur J, Pavoine S, Hamerlynck O, Duvail S (2008) Rapid acoustic survey for biodiversity appraisal. PLoS One 3:e4065

    Article  Google Scholar 

  46. Bertucci F, Beauchaud M, Attia J, Mathevon N (2010) Sounds modulate males’ aggressiveness in a cichlid fish. Ethology 116:1179–1188

    Article  Google Scholar 

  47. Bertucci F, Attia J, Beauchaud M, Mathevon N (2012) Sounds produced by the cichlid fish Metriaclima zebra allow reliable estimation of size and provide information on individual identity. J Fish Biol 80:752–766

    Article  Google Scholar 

  48. Akamatsu T, Okumura T, Novarini N, Yan HY (2002) Empirical refinements applicable to the recording of fish sounds in small tanks. J Acoust Soc Am 112:3073–3082

    Article  Google Scholar 

  49. Popper AN (1970) Auditory capacities of the Mexican blind cave fish (Astyanax jordani) and its eyed ancestor (Astyanax mexicanus). Anim Behav 18:552–562

    Article  Google Scholar 

  50. Parmentier E, Fine ML (2016) Fish sound production: insights. In: Suthers RA, Fitch WT, Fay RR, Popper AN (eds) Vertebrate sound production and acoustic communication. Springer International Publishing, Cham, pp 19–49

    Chapter  Google Scholar 

  51. Ladich F (2014) Fish bioacoustics. Curr Opin Neurobiol 28:121–127

    Article  Google Scholar 

  52. Mundry R, Sommer C (2007) Discriminant function analysis with nonindependent data: consequences and an alternative. Anim Behav 74:965–976

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Brian Martineau and the husbandry technicians’ team at the Department of Genetics of Harvard Medical School for their help in installing the soundproof booth and for excellent fish care. I am very grateful to my collaborators, Joël Attia and Sylvie Rétaux, who allowed me to record underwater sounds. Finally, this chapter would not have been possible without the generous support of Clifford Tabin supporting my work and providing comments and edits to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Hyacinthe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hyacinthe, C. (2023). Recording Acoustic Behavior in Astyanax mexicanus Fish: Acquisition, Decryption, and Interpretation. In: Wang, W., Rohner, N., Wang, Y. (eds) Emerging Model Organisms. Neuromethods, vol 194. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2875-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2875-1_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2874-4

  • Online ISBN: 978-1-0716-2875-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics