Skip to main content

High-Throughput Screening of Fosmid Libraries for Increased Identification of Novel N-Acyl Homoserine Lactone Degrading Enzymes

  • Protocol
  • First Online:
Microbial Environmental Genomics (MEG)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2605))

Abstract

Functional metagenomics is an essential and effective approach to recover new enzymes from the environment. In this chapter, we describe a procedure to construct metagenomic library to discover new N-acyl homoserine lactone (AHL) degrading enzymes based on a direct method or an indirect enrichment procedure. Applicable to any bacterial ecosystem, it enables rapid identification of functional enzymes effective to degrade AHLs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fierer N, Lauber CL, Ramirez KS, Zaneveld J et al (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017

    Article  CAS  Google Scholar 

  2. Viotti C, Bach C, Maillard F, Ziegler-Devin I et al (2021) Sapwood and heartwood affect differentially bacterial and fungal community structure and successional dynamics during Quercus petraea decomposition. Environ Microbiol. https://doi.org/10.1111/1462-2920.15522

  3. Delmont TO, Prestat E, Keegan KP, Faubladier M et al (2012) Structure, fluctuation and magnitude of a natural grassland soil metagenome. ISME J 6:1677–1687

    Article  CAS  Google Scholar 

  4. Uroz S, Ioannidis P, Lengelle J, Cébron A et al (2013) Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation. PLoS One 8:e55929

    Article  CAS  Google Scholar 

  5. Quince C, Walker AW, Simpson JT, Loman NJ et al (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35:833–844

    Article  CAS  Google Scholar 

  6. Xiao L, Feng Q, Liang S, Sonne SB et al (2015) A catalog of the mouse gut metagenome. Nat Biotechn 33:1103–1108

    Article  CAS  Google Scholar 

  7. Tasse L, Bercovici J, Pizzut-Serin S, Robe P et al (2010) Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res 20:1605–1612

    Article  CAS  Google Scholar 

  8. Taupp M, Mewis K, Hallam SJ (2011) The art and design of functional metagenomic screens. Curr Opin Biotechnol 22:465–472

    Article  CAS  Google Scholar 

  9. Riaz K, Elmerich C, Moreira D, Raffoux A et al (2008) A metagenomic analysis of soil bacteria extends the diversity of quorum-quenching lactonases. Environ Microbiol 10:560–570

    Article  CAS  Google Scholar 

  10. Ufarté L, Bozonnet S, Laville E, Cecchini DA et al (2016) Functional metagenomics: construction and high-throughput screening of fosmid libraries for discovery of novel carbohydrate-active enzymes. In: Microbial environmental genomics (MEG). Humana Press, New York, pp 257–271

    Chapter  Google Scholar 

  11. Nasuno E, Kimura N, Fujita MJ, Nakatsu CH et al (2012) Phylogenetically novel LuxI/LuxR-type quorum sensing systems isolated using a metagenomic approach. Appl Environ Microbiol. 78:8067–8074

    Article  CAS  Google Scholar 

  12. Guan C, Ju J, Borlee BR, Williamson LL et al (2007) Signal mimics derived from a metagenomic analysis of the gypsy moth gut microbiota. Appl Environ Microbiol 73:3669–3676

    Article  CAS  Google Scholar 

  13. Weiland-Bräuer N, Fischer MA, Pinnow N, Schmitz RA (2019) Potential role of host-derived quorum quenching in modulating bacterial colonization in the moon jellyfish Aurelia aurita. Sci Rep 9:1–12

    Article  Google Scholar 

  14. Mukherjee S, Bassler BL (2019) Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol 17:371–382

    Article  CAS  Google Scholar 

  15. Brennan CA, Mandel MJ, Gyllborg MC, Thomasgard KA et al (2013) Genetic determinants of swimming motility in the squid light-organ symbiont Vibrio fischeri. Microbiology 2:576–594

    Article  CAS  Google Scholar 

  16. Wood DW, Gong F, Daykin MM, Williams P et al (1997) N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol 179:7663–7670

    Article  CAS  Google Scholar 

  17. Winson MK, Camara M, Latifi A, Foglino M et al (1995) Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in î. Proc Natl Acad Sci U S A 92:9427–9431

    Article  CAS  Google Scholar 

  18. Wisniewski-Dyé F, Downie JA (2002) Quorum-sensing in Rhizobium. Antonie Van Leeuwenhoek 81:397–407

    Article  Google Scholar 

  19. Whitehead NA, Barnard AM, Slater H, Simpson NJ et al (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microb Rev 25:365–404

    Article  CAS  Google Scholar 

  20. Uroz S, Chhabra SR, Camara M, Williams P et al (2005) N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151:3313–3322

    Article  CAS  Google Scholar 

  21. Grandclément C, Tannières M, Moréra S, Dessaux Y et al (2016) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 40:86–116

    Article  Google Scholar 

  22. Uroz S, Oger PM, Chapelle E, Adeline MT et al (2008) A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl Environ Microbiol 74:1357–1366

    Article  CAS  Google Scholar 

  23. Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum quenching: the yin and yang of bacterial communication. Chembiochem 10:205–216

    Article  CAS  Google Scholar 

  24. Bijtenhoorn P, Schipper C, Hornung C, Quitschau M, Grond S (2011) BpiB05, a novel metagenome-derived hydrolase acting on N-acylhomoserine lactones. J Biotechnol 155:86–94

    Article  CAS  Google Scholar 

  25. Torres M, Uroz S, Salto R, Fauchery L et al (2017) HqiA, a novel quorum-quenching enzyme which expands the AHL lactonase family. Sci Rep 7:1–15

    Article  Google Scholar 

  26. Tannières M, Beury-Cirou A, Vigouroux A, Mondy S et al (2013) A metagenomic study highlights phylogenetic proximity of quorum-quenching and xenobiotic-degrading amidases of the AS-family. PLoS One 8:e65473

    Article  Google Scholar 

  27. Chilton MD, Currier TC, Farrand SK, Bendich AJ et al (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci 71:3672–3676

    Article  CAS  Google Scholar 

  28. McClean KH, Winson MK, Fish L, Taylor A et al (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711

    Article  CAS  Google Scholar 

  29. Uroz S, Oger PM (2017) Screening for N-AHSL-based-signaling interfering enzymes. In: Metagenomics. Humana Press, New York, pp 271–286

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was funded by the INRA metaprogramme (project Metascreen) and the Labex ARBRE (ANR-11-LABX-0002-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephane Uroz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Uroz, S., Oger, P. (2023). High-Throughput Screening of Fosmid Libraries for Increased Identification of Novel N-Acyl Homoserine Lactone Degrading Enzymes. In: Martin, F., Uroz, S. (eds) Microbial Environmental Genomics (MEG). Methods in Molecular Biology, vol 2605. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2871-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2871-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2870-6

  • Online ISBN: 978-1-0716-2871-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics