Skip to main content

Visualization and Quantification of the Dynamics of Actin Filaments in Arabidopsis Pollen Tubes

  • Protocol
  • First Online:
The Plant Cytoskeleton

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2604))

Abstract

The actin cytoskeleton plays an essential role in the regulation of polarized pollen tube growth, and its functions are dictated by its spatial organization and dynamics. Here we describe an assay to monitor the dynamics of actin filaments decorated with Lifeact-mEGFP in Arabidopsis pollen tubes using spinning disk confocal microscopy and measuring the parameters associated with their dynamics. The method allows us to assess the dynamics of actin filaments in growing Arabidopsis pollen tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bedinger PA, Hardeman KJ, Loukides CA (1994) Travelling in style: the cell biology of pollen. Trends Cell Biol 4:132–138

    Article  CAS  Google Scholar 

  2. Jiang Y, Zhang M, Huang S (2017b) Analysis of actin-based intracellular trafficking in pollen tubes. Methods Mol Biol 1662:125–136

    Article  CAS  Google Scholar 

  3. Kroeger JH, Daher FB, Grant M, Geitmann A (2009) Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes. Biophys J 97:1822–1831

    Article  CAS  Google Scholar 

  4. Zhang Y, He J, Lee D, McCormick S (2010) Interdependence of endomembrane trafficking and actin dynamics during polarized growth of Arabidopsis pollen tubes. Plant Physiol 152:2200–2210

    Article  CAS  Google Scholar 

  5. Chen N, Qu X, Wu Y, Huang S (2009) Regulation of actin dynamics in pollen tubes: control of actin polymer level. J Integr Plant Biol 51:740–750

    Article  CAS  Google Scholar 

  6. Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572

    Article  CAS  Google Scholar 

  7. Fu Y (2015) The cytoskeleton in the pollen tube. Curr Opin Plant Biol 28:111–119

    Article  CAS  Google Scholar 

  8. Qu X, Jiang Y, Chang M et al (2015) Organization and regulation of the actin cytoskeleton in the pollen tube. Front Plant Sci 5:786

    Article  Google Scholar 

  9. Ren H, Xiang Y (2007) The function of actin-binding proteins in pollen tube growth. Protoplasma 230:171–182

    Article  CAS  Google Scholar 

  10. Staiger CJ, Poulter NS, Henty JL et al (2010) Regulation of actin dynamics by actin-binding proteins in pollen. J Exp Bot 61:1969–1986

    Article  CAS  Google Scholar 

  11. Stephan OOH (2017) Actin fringes of polar cell growth. J Exp Bot 68:3303–3320

    Article  CAS  Google Scholar 

  12. Xu Y, Huang S (2020) Control of the actin cytoskeleton within apical and subapical regions of pollen tubes. Front Cell Dev Biol 8:614821

    Article  Google Scholar 

  13. Cai G, Parrotta L, Cresti M (2015) Organelle trafficking, the cytoskeleton, and pollen tube growth. J Integr Plant Biol 57:63–78

    Article  Google Scholar 

  14. Hepler PK, Winship LJ (2015) The pollen tube clear zone: clues to the mechanism of polarized growth. J Integr Plant Biol 57:79–92

    Article  CAS  Google Scholar 

  15. Vidali L, Rounds CM, Hepler PK, Bezanilla M (2009) Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS One 4:e5744

    Article  Google Scholar 

  16. Chang M, Huang S (2015) Arabidopsis ACT11 modifies actin turnover to promote pollen germination and maintain the normal rate of tube growth. Plant J 83:515–527

    Article  CAS  Google Scholar 

  17. Diao M, Li X, Huang S (2020) Arabidopsis AIP1-1 regulates the organization of apical actin filaments by promoting their turnover in pollen tubes. Sci China Life Sci 63:239–250

    Article  CAS  Google Scholar 

  18. Jiang Y, Chang M, Lan Y, Huang S (2019) Mechanism of CAP1-mediated apical actin polymerization in pollen tubes. Proc Natl Acad Sci USA 116:12084–12093

    Article  CAS  Google Scholar 

  19. Jiang Y, Wang J, Xie Y, Chen N, Huang S (2017a) ADF10 shapes the overall organization of apical actin filaments by promoting their turnover and ordering in pollen tubes. J Cell Sci 130:3988–4001

    CAS  Google Scholar 

  20. Lan Y, Liu X, Fu Y, Huang S (2018) Arabidopsis class I formins control membrane-originated actin polymerization at pollen tube tips. PLoS Genet 14:e1007789

    Article  Google Scholar 

  21. Liu X, Qu X, Jiang Y et al (2015) Profilin regulates apical actin polymerization to control polarized pollen tube growth. Mol Plant 8:1694–1709

    Article  CAS  Google Scholar 

  22. Qu X, Zhang H, Xie Y et al (2013) Arabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. Plant Cell 25:1803–1817

    Article  CAS  Google Scholar 

  23. Qu X, Zhang R, Zhang M et al (2017) Organizational innovation of apical actin filaments drives rapid pollen tube growth and turning. Mol Plant 10:930–947

    Article  CAS  Google Scholar 

  24. Zhang M, Zhang R, Qu X, Huang S (2016) Arabidopsis FIM5 decorates apical actin filaments and regulates their organization in the pollen tube. J Exp Bot 67:3407–3417

    Article  CAS  Google Scholar 

  25. Zheng Y, Xie Y, Jiang Y, Qu X, Huang S (2013) Arabidopsis actin-depolymerizing factor7 severs actin filaments and regulates actin cable turnover to promote normal pollen tube growth. Plant Cell 25:3405–3423

    Article  CAS  Google Scholar 

  26. Staiger CJ, Sheahan MB, Khurana P et al (2009) Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. J Cell Biol 184:269–280

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (32270338 and 31970180) and the startup fund from Huazhong Agricultural University. We thank Dr. Wanying Zhao for the help in drawing the schematic diagram shown in Fig. 4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolu Qu or Shanjin Huang .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material (s)

(MP4 9220 kb)

(MP4 9359 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lu, Q., Liu, X., Qu, X., Huang, S. (2023). Visualization and Quantification of the Dynamics of Actin Filaments in Arabidopsis Pollen Tubes. In: Hussey, P.J., Wang, P. (eds) The Plant Cytoskeleton. Methods in Molecular Biology, vol 2604. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2867-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2867-6_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2866-9

  • Online ISBN: 978-1-0716-2867-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics