Skip to main content

Application of Shear Stress to Endothelial Cells Using a Parallel Plate Flow Chamber

  • Protocol
  • First Online:
Mechanobiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2600))

Abstract

Endothelial cell response to shear stress from the flowing blood plays an important role in diseases such as atherosclerosis. It is therefore essential to study how different flow regimes, including both atheroprotective laminar flow and atheropromoting disturbed flow, impact endothelial cell function. Shear stress effects can be studied in vitro using a variety of techniques, each with their own advantages and disadvantages. In this chapter, we describe how to use a parallel plate flow chamber to study the impact of both laminar and disturbed flow on endothelial cell monolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiu J-J, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91:327–387. https://doi.org/10.1152/physrev.00047.2009

    Article  Google Scholar 

  2. Langille BL, Adamson SL (1981) Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice. Circ Res 48:481–488

    Article  CAS  Google Scholar 

  3. Nerem RM, Levesque MJ, Cornhill JF (1981) Vascular endothelial morphology as an indicator of the pattern of blood flow. J Biomech Eng 103:172–176

    Article  CAS  Google Scholar 

  4. Wong AJ, Pollard TD, Herman IM (1983) Actin filament stress fibers in vascular endothelial cells in vivo, vol 219. Science, New York, pp 867–869

    Google Scholar 

  5. Berk BC (2008) Atheroprotective signaling mechanisms activated by steady laminar flow in endothelial cells. Circulation 117:1082–1089. https://doi.org/10.1161/circulationaha.107.720730

    Article  Google Scholar 

  6. Federici M et al (2002) Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 106:466–472. https://doi.org/10.1161/01.CIR.0000023043.02648.51

    Article  CAS  Google Scholar 

  7. Li YS, Haga JH, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38:1949–1971. https://doi.org/10.1016/j.jbiomech.2004.09.030

    Article  Google Scholar 

  8. Traub O, Berk BC (1998) Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol 18:677–685

    Article  CAS  Google Scholar 

  9. Cunningham KS, Gotlieb AI (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab Investig J Techn Methods Pathol 85:9–23. https://doi.org/10.1038/labinvest.3700215

    Article  CAS  Google Scholar 

  10. Malek AM, Gibbons GH, Dzau VJ, Izumo S (1993) Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet-derived growth factor B chain in vascular endothelium. J Clin Invest 92:2013–2021. https://doi.org/10.1172/jci116796

    Article  CAS  Google Scholar 

  11. Asakura T, Karino T (1990) Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 66:1045–1066

    Article  CAS  Google Scholar 

  12. Bharadvaj BK, Mabon RF, Giddens DP (1982) Steady flow in a model of the human carotid bifurcation. Part I--flow visualization. J Biomech 15:349–362

    Article  CAS  Google Scholar 

  13. Hsiai TK et al (2001) Pulsatile flow regulates monocyte adhesion to oxidized lipid-induced endothelial cells. Arterioscler Thromb Vasc Biol 21:1770–1776

    Article  CAS  Google Scholar 

  14. Hsiai TK et al (2003) Monocyte recruitment to endothelial cells in response to oscillatory shear stress. FASEB J 17:1648–1657. https://doi.org/10.1096/fj.02-1064com

    Article  CAS  Google Scholar 

  15. Huang C-C et al (2015) Glycolytic inhibitor 2-deoxyglucose simultaneously targets cancer and endothelial cells to suppress neuroblastoma growth in mice. Dis Models Mech 8:1247. https://doi.org/10.1242/dmm.021667

    Article  CAS  Google Scholar 

  16. Wilcox JN, Smith KM, Williams LT, Schwartz SM, Gordon D (1988) Platelet-derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization. J Clin Invest 82:1134–1143. https://doi.org/10.1172/jci113671

    Article  CAS  Google Scholar 

  17. Noris M et al (1995) Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ Res 76:536–543

    Article  CAS  Google Scholar 

  18. Yetik-Anacak G, Catravas JD (2006) Nitric oxide and the endothelium: history and impact on cardiovascular disease. Vasc Pharmacol 45:268–276. https://doi.org/10.1016/j.vph.2006.08.002

    Article  CAS  Google Scholar 

  19. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis (Dallas, Tex) 5:293–302

    CAS  Google Scholar 

  20. Davis CA et al (2015) Device-based in vitro techniques for mechanical stimulation of vascular cells: a review. J Biomech Eng 137:040801. https://doi.org/10.1115/1.4029016

    Article  Google Scholar 

  21. Sedlak JM, Clyne AM (2020) A modified parallel plate flow chamber to study local endothelial response to recirculating disturbed flow. J Biomech Eng 142. https://doi.org/10.1115/1.4044899

Download references

Acknowledgments

This work was support by NIH grants (1R01HL140239, DK102107-01) and NSF grants (1916997, 0846751).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisa Clyne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sedlak, J., Clyne, A. (2023). Application of Shear Stress to Endothelial Cells Using a Parallel Plate Flow Chamber. In: Zaidel-Bar, R. (eds) Mechanobiology. Methods in Molecular Biology, vol 2600. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2851-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2851-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2850-8

  • Online ISBN: 978-1-0716-2851-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics