Skip to main content

In Situ Hybridization as a Method to Examine Gene Regulatory Activity In Vivo

  • Protocol
  • First Online:
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2599))

Abstract

Transcription factor-enhancer binding events are among the most well-studied protein-DNA interactions, allowing researchers to determine mechanisms of transcriptional activation or repression during development. While large-scale ChIP-sequence datasets, together with computational predictions and chromatin accessibility data, yield information on potential transcription factor binding activities, reporter gene assays provide measurable information on whether these binding activities are functional in particular cell types during development. Here, we present a detailed protocol to examine enhancer activity in Drosophila embryos using cloning, transgenesis, and in situ hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garcia HG, Tikhonov M, Lin A, Gregor T (2013) Quantitative imaging of transcription in living drosophila embryos links polymerase activity to patterning. Curr Biol 23:2140–2145. https://doi.org/10.1016/J.CUB.2013.08.054

    Article  CAS  PubMed  Google Scholar 

  2. Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445. https://doi.org/10.1016/S1097-2765(00)80143-4

    Article  CAS  PubMed  Google Scholar 

  3. Golding I, Paulsson J, Zawilski SM, Cox EC (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123:1025–1036. https://doi.org/10.1016/J.CELL.2005.09.031

    Article  CAS  PubMed  Google Scholar 

  4. Yunger S, Rosenfeld L, Garini Y, Shav-Tal Y (2010) Single-allele analysis of transcription kinetics in living mammalian cells. Nat Methods 7:631–633. https://doi.org/10.1038/nmeth.1482

    Article  CAS  PubMed  Google Scholar 

  5. Larson DR, Zenklusen D, Wu B, Chao JA, Singer RH (2011) Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science (80- ) 332:475–478. https://doi.org/10.1126/SCIENCE.1202142

    Article  CAS  Google Scholar 

  6. Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells AL, Chao JA, Park HY, De Turris V, Lopez-Jones M, Singer RH (2011) A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods 8:165–170. https://doi.org/10.1038/nmeth.1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Campbell PD, Chao JA, Singer RH, Marlow FL (2015) Dynamic visualization of transcription and RNA subcellular localization in zebrafish. Development 142:1368–1374. https://doi.org/10.1242/DEV.118968/VIDEO-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kosman D, Mizutani CM, Lemons D, Cox WG, McGinnis W, Bier E (2004) Multiplex detection of RNA expression in Drosophila embryos. Science (80-) 305:846. https://doi.org/10.1126/science.1099247

    Article  CAS  Google Scholar 

  9. Hughes SC, Krause HM (1998) Double labeling with fluorescence in situ hybridization in Drosophila whole-mount embryos. BioTechniques 24:530–532. https://doi.org/10.2144/98244BM01

    Article  CAS  PubMed  Google Scholar 

  10. Tautz D, Pfeifle C (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98:81–85. https://doi.org/10.1007/BF00291041

    Article  CAS  PubMed  Google Scholar 

  11. Lehmann R, Tautz D (1994) Chapter 30 In situ hybridization to RNA. Methods Cell Biol 44:575–598. https://doi.org/10.1016/S0091-679X(08)60933-4

    Article  CAS  PubMed  Google Scholar 

  12. Chen H, Xu Z, Mei C, Yu D, Small S (2012) A system of repressor gradients spatially organizes the boundaries of Bicoid-dependent target genes. Cell 149:618–629. https://doi.org/10.1016/j.cell.2012.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Datta RR, Ling J, Kurland J, Ren X, Xu Z, Yucel G, Moore J, Shokri L, Baker I, Bishop T, Struffi P, Levina R, Bulyk ML, Johnston RJ, Small S (2018) A feed-forward relay integrates the regulatory activities of Bicoid and Orthodenticle via sequential binding to suboptimal sites. Genes Dev 32:723–736. https://doi.org/10.1101/gad.311985.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu Z, Chen H, Ling J, Yu D, Struffi P, Small S (2014) Impacts of the ubiquitous factor Zelda on Bicoid-dependent DNA binding and transcription in Drosophila. Genes Dev 28:608–621. https://doi.org/10.1101/gad.234534.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arnold CD, Gerlach D, Stelzer C, Boryń ŁM, Rath M, Stark A (2013) Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science (80- ) 339:1074–1077. https://doi.org/10.1126/SCIENCE.1232542/SUPPL_FILE/PAP.PDF

    Article  CAS  Google Scholar 

  16. Oki S, Ohta T, Shioi G, Hatanaka H, Ogasawara O, Okuda Y, Kawaji H, Nakaki R, Sese J, Meno C (2018) ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data. EMBO Rep 19:e46255. https://doi.org/10.15252/EMBR.201846255

    Article  PubMed  PubMed Central  Google Scholar 

  17. Celniker SE, Dillon LAL, Gerstein MB, Gunsalus KC, Henikoff S, Karpen GH, Kellis M, Lai EC, Lieb JD, MacAlpine DM, Micklem G, Piano F, Snyder M, Stein L, White KP, Waterston RH (2009) Unlocking the secrets of the genome. Nature 459:927–930. https://doi.org/10.1038/459927a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  PubMed Central  Google Scholar 

  19. Contrino S, Smith RN, Butano D, Carr A, Hu F, Lyne R, Rutherford K, Kalderimis A, Sullivan J, Carbon S, Kephart ET, Lloyd P, Stinson EO, Washington NL, Perry MD, Ruzanov P, Zha Z, Lewis SE, Stein LD, Micklem G (2012) modMine: flexible access to modENCODE data. Nucleic Acids Res 40:D1082–D1088. https://doi.org/10.1093/NAR/GKR921

    Article  CAS  PubMed  Google Scholar 

  20. O’Geen H, Echipare L, Farnham PJ (2011) Using ChIP-Seq technology to generate high-resolution profiles of histone modifications. Methods Mol Biol 791:265–286. https://doi.org/10.1007/978-1-61779-316-5_20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560. https://doi.org/10.1038/nature06008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837. https://doi.org/10.1016/J.CELL.2007.05.009/ATTACHMENT/E92AC6EB-23C0-4322-B20E-C21961393581/MMC1.PDF

    Article  CAS  PubMed  Google Scholar 

  23. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A, Thiessen N, Griffith OL, He A, Marra M, Snyder M, Jones S (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657. https://doi.org/10.1038/nmeth1068

    Article  CAS  PubMed  Google Scholar 

  24. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science (80- ) 316:1497–1502. https://doi.org/10.1126/SCIENCE.1141319/SUPPL_FILE/PAP.PDF

    Article  CAS  Google Scholar 

  25. Raha D, Hong M, Snyder M (2010) ChIP-Seq: a method for global identification of regulatory elements in the genome. Curr Protoc Mol Biol 91:21.19.1–21.19.14. https://doi.org/10.1002/0471142727.MB2119S91

    Article  Google Scholar 

  26. Yan F, Powell DR, Curtis DJ, Wong NC (2020) From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis. Genome Biol 21:1–16. https://doi.org/10.1186/S13059-020-1929-3

    Article  Google Scholar 

  27. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218. https://doi.org/10.1038/nmeth.2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cusanovich DA, Reddington JP, Garfield DA, Daza RM, Aghamirzaie D, Marco-Ferreres R, Pliner HA, Christiansen L, Qiu X, Steemers FJ, Trapnell C, Shendure J, Furlong EEM (2018) The cis-regulatory dynamics of embryonic development at single-cell resolution. Nature 555:538–542. https://doi.org/10.1038/nature25981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blythe SA, Wieschaus EF (2016) Establishment and maintenance of heritable chromatin structure during early Drosophila embryogenesis. elife 5. https://doi.org/10.7554/eLife.20148

  30. Bergman CM, Carlson JW, Celniker SE (2005) Drosophila DNase I footprint database: a systematic genome annotation of transcription factor binding sites in the fruitfly, Drosophila melanogaster. Bioinformatics 21:1747–1749. https://doi.org/10.1093/BIOINFORMATICS/BTI173

    Article  CAS  PubMed  Google Scholar 

  31. Thomas S, Li XY, Sabo PJ, Sandstrom R, Thurman RE, Canfield TK, Giste E, Fisher W, Hammonds A, Celniker SE, Biggin MD, Stamatoyannopoulos JA (2011) Dynamic reprogramming of chromatin accessibility during Drosophila embryo development. Genome Biol 12:1–17. https://doi.org/10.1186/GB-2011-12-5-R43/FIGURES/6

    Article  Google Scholar 

  32. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132:311–322. https://doi.org/10.1016/J.CELL.2007.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu H, Reynolds AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song L, Vong S, Weaver M, Yan Y, Zhang Z, Zhang Z, Lenhard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo PJ, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyannopoulos JA (2012) The accessible chromatin landscape of the human genome. Nature 489:75–82. https://doi.org/10.1038/nature11232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hesselberth JR, Chen X, Zhang Z, Sabo PJ, Sandstrom R, Reynolds AP, Thurman RE, Neph S, Kuehn MS, Noble WS, Fields S, Stamatoyannopoulos JA (2009) Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat Methods 6:283–289. https://doi.org/10.1038/NMETH.1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD (2007) FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 17:877. https://doi.org/10.1101/GR.5533506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Waki H, Nakamura M, Yamauchi T, Wakabayashi KI, Yu J, Hirose-Yotsuya L, Take K, Sun W, Iwabu M, Okada-Iwabu M, Fujita T, Aoyama T, Tsutsumi S, Ueki K, Kodama T, Sakai J, Aburatani H, Kadowaki T (2011) Global mapping of cell type–specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation. PLoS Genet 7:e1002311. https://doi.org/10.1371/JOURNAL.PGEN.1002311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Small S (2000) In vivo analysis of lacZ fusion genes in transgenic Drosophila melanogaster. Methods Enzymol. https://doi.org/10.1016/s0076-6879(00)26052-7

  38. Bateman JR, Lee AM, Wu C (2006) Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange. Genetics 173:769–777. https://doi.org/10.1534/genetics.106.056945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rhea R. Datta or Pinar Onal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Datta, R.R., Onal, P. (2023). In Situ Hybridization as a Method to Examine Gene Regulatory Activity In Vivo. In: Simoes-Costa, M. (eds) DNA-Protein Interactions. Methods in Molecular Biology, vol 2599. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2847-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2847-8_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2846-1

  • Online ISBN: 978-1-0716-2847-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics